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1 Introduction

The recent liberalization of energy markets in various countries has led to the institution of

organized exchanges where electricity is traded. An important implication of this liberal-

ization is that market participants face a significant increase in price risk as prices now are

determined freely by supply and demand. This has spurred the demand for a wide variety of

electricity derivatives as well as models and tools for valuation and risk management.

The majority of electricity is not traded in the spot market for immediate delivery, but

with forwards and futures contracts for delivery in the future. Together the prices of these

contracts define a forward curve or a term structure of electricity prices. The unique features

of electricity and the resulting type of traded contracts pose serious challenges to modeling

the forward curve. In particular, electricity differs from other commodities in that it is

(practically) non-storable. Electricity is therefore often referred to as a flow commodity (as

opposed to a stock commodity) and contracts are specified with delivery taking place over a

future time period rather than at a specific point in time.

Existing models for electricity forward prices have a similar structure to models for the

term structure of interest rates, see e.g. Hinz and Wilhelm (2006). These models can be

roughly classified into two groups. Models in the first group involve a specification for the

evolution of the spot price, often featuring a dynamic factor structure. No-arbitrage principles

are applied to derive the prices of forwards and futures. Examples are in Clewlow and

Strickland (1999), Schwartz and Smith (2000), Lucia and Schwartz (2002), Benth et al. (2007),

Monfort and Feŕon (2012), among others. The second group of models describes the evolution

of the entire forward curve directly, based on the pioneering work of Heath, Jarrow and Morton

[HJM] (1992). Examples are found in Koekebakker (2007), Benth and Koekebakker (2008)

and Bjerksund et al. (2010), among others.

Most of the existing models for electricity pricing, however, yield intractable implications

for observed forward prices. Expressions for forward prices and their distributions are often

not available in closed-form, which severely complicates estimation and option pricing. A

specific complication arises due to the fact that traded forwards and futures contracts do not
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involve delivery taking place at a specific point in time but instead during longer periods

of months, quarters and years. To rule out arbitrage opportunities, forward prices must

exhibit an ‘additive structure’, where e.g the price of a yearly forward contract should equal

the average of the corresponding quarterly forward prices. An important reason for the

intractability of many pricing models is a non-linear relation between forward prices and the

underlying risk factors, which makes them incompatible with this additive structure of forward

prices. For example, Benth and Koekebakker (2008) apply the HJM framework to observed

contract prices, where particular contract prices with non-overlapping delivery periods are

directly modeled by a log-normal process. This approach is however inconsistent for forwards

having overlapping delivery periods. For example, when four consecutive quarterly forward

contracts are priced by the model, the corresponding price of the yearly forward will not be

log-normally distributed (due to the non-additivity of the lognormal distribution).

In this paper we propose a novel class of arbitrage-free electricity pricing models to over-

come the above limitation. The key feature of these models is an additive factor structure,

such that the arbitrage-free prices of forward and futures contracts are linear in the factors.

Our class fits in the linearity-generating processes framework of Gabaix (2009) and offers a

great deal of flexibility in specifying the factor dynamics. For instance, factor volatilities can

be flexibly specified without affecting the relation between the factors and forward prices.

This flexibility allows for factor specifications based on well-known processes with tractable

features such as standard affine processes by Duffie and Kan (1996). Moreover, unlike other

models, our proposed structure offers a convenient separation between factor loadings (the

relation between factors and prices) and factor dynamics. This feature can be exploited to

directly estimate the factors and the factor loading parameters by fitting the observed forward

prices.

Our modelling approach allows us to fully exploit the information in forward prices by

directly estimating models to a full panel of observed forward and futures contracts. We

thereby contribute to the extant literature that focusses on estimating models to the dynamics

of the observed spot price series. The panel approach offers more precise estimates of the

factors and parameters by also exploiting information in the observed shape of the forward
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curve and the time-series of the forward prices.

In an empirical analysis, we estimate different models using a large panel of spot and

forward prices from the Nordic electricity market. We find that forward prices are adequately

described by three factors that capture changes in the level, slope and curvature of the forward

curve. We explore the class of affine diffusion processes to model factor dynamics and find

support for time-varying volatilities. Our findings are however consistent with a trade-off

in flexibility between specifying conditional volatilities and correlations as found by Dai and

Singleton (2000) as well as a flexibility trade-off between conditional volatility and fit of

observed prices. Finally, the models are used to analyse the implications for forward premia.

We document a substantial time-varying forward premia, consistent with the findings in

Longstaff and Wang (2004).

A few models proposed in the literature fit into our general modeling framework. Benth,

Kallsen and Meyer-Brandis (2008) put forward an additive model based on pure-jump Levy

processes. Estimation of this model is challenging and is explored in Meyer-Brandis and

Tankov (2008). Lucia and Schwartz (2002) and Knittel and Roberts (2005) also consider

models with an additive structure, but they only consider Gaussian factor dynamics and

focus on the spot price. Koekebakker (2007) advocates the use of an additive structure in the

framework of a Gaussian HJM-type model. However, this requires extracting and modeling

the entire forward curve first. This can be avoided in our modeling approach by estimating

the model directly using observed forwards and futures prices.

2 General modeling framework

This section introduces the arbitrage-free modeling framework that provides tractable prices

for electricity forwards and futures. Let St denote the spot price of electricity for instantaneous

delivery at time t, i.e. delivery over the period [t, t + dt]. Similarly, let ft(T ) denote the

forward price negotiated at t ≤ T for instantaneous delivery at time T , i.e. delivery over

the period [T, T + dt]. As discussed in the introduction, in practice most electricity forward

contracts are specified with delivery periods covering months, quarters or years rather than
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an instantaneous period. For that purpose, we define Ft(T1, T2) as the average-based forward

price negotiated at t ≤ T1 < T2 for future delivery of electricity over the period [T1, T2].

An arbitrage-free model of electricity prices presupposes a frictionless and arbitrage-free

market for all financial claims based on the spot price. We achieve this by directly assuming

there exists a risk-neutral probability measure Q, equivalent to the objective probability

measure P, that prices all such claims. The arbitrage-free price at time t of any contingent

claim χ(ST ) based on the spot electricity price at a future point in time T > t is then given

by

Pχ,t = e−r(T−t) EQ
t (χ(ST )), (1)

where EQ
t denotes the expectation under the probability measure Q conditional on all infor-

mation available at time t and r denotes the risk-free interest rate, which is assumed to be

constant for simplicity.1 Since a forward contract has no value at initiation, the no-arbitrage

pricing relation implies that the instantaneous forward price is given by

ft(T ) = EQ
t (ST ), ∀t < T.

In words, the forward price is equal to the expected future spot price under the risk-neutral

measure, which corrects for a risk premium, see Björk (2004, Ch. 26).

The average-based forward contract that delivers electricity over a period [T1, T2] is equiv-

alent to a portfolio of all instantaneous forwards delivering over this period. Hence the

average-based forward price is equal to the weighted average of all instantaneous forward

prices covering the delivery period [T1, T2], i.e.

Ft(T1, T2) =

∫ T2

T1

w(s)ft(s) ds, (2)

with w(s) = 1
T2−T1

if the contract settles at maturity T2, and w(s) = re−rs

e−rT1−e−rT2
if settlement

1This is a standard assumption. As a consequence there is no difference in price between a forward and
a future with equivalent delivery periods. This assumption can be relaxed by assuming interest rates are
time-varying but independent of the spot price St.

4



takes place continuously during the delivery period, see Koekebakker (2007).

2.1 An arithmetic linear factor model

The arbitrage pricing framework allows for many different models. By specifying the risk-

neutral dynamics of the spot price, we can use no-arbitrage arguments to obtain prices for

derivative contracts. A key concern is to specify a model that leads to tractable expressions

for commonly traded contracts such as forwards. In our modeling framework, we make two

structural assumptions to ensure closed-form expressions for forward prices.

Assumption 1. The spot price is a linear function of m factors, i.e.

St = δ0(t) + δ′1Xt, (3)

where Xt is an m-vector of factors, and δ0(t) is a deterministic function capturing potential

trends and seasonal components in the spot price.

Assumption 2. The factors Xt follow a continuous-time vector process with a risk-neutral

drift that is linear in Xt, i.e.

EQ
t (dXt) = (cQ +DQXt) dt. (4)

These assumptions ensure that all instantaneous and average-based forward prices are

also linear in the factors Xt. In particular, the instantaneous forward price is given by2

ft(T ) = a(t, T − t) + b(T − t)′Xt, (5)

b(τ) = eD
Q′τδ1, (6)

a(t, τ) = δ0(t+ τ) + [b(τ)− δ1]′ (DQ)−1cQ, (7)

where Im denotes an m × m identity matrix and eA denotes the matrix exponential for a

2For convenience we assume invertibility of DQ, which is consistent with Xt being mean-reverting under
Q.
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square matrix A.3 The price of an average-based forward contract that delivers electricity

over a period [T1, T2] can be found straightforwardly by applying the above expression in (2).

In particular, assuming the contract settles at maturity, we have

Ft(T1, T2) = A(t, T1 − t, T2 − t) +B(T1 − t, T2 − t)′Xt, (8)

B(τ1, τ2) = 1
τ2−τ1

(
eD

Q′τ2 − eDQ′τ1
)

(DQ′)−1δ1, (9)

A(t, τ1, τ2) = 1
τ2−τ1

∫ τ2

τ1

δ0(t+ s) ds+ [B(τ1, τ2)− δ1]′ (DQ)−1cQ. (10)

The linear relation between the spot price and the factors contrasts with many existing

spot price models that assume a multiplicative relation

St = eδ0+δ1
′Xt , (11)

which typically is motivated by the fact that the resulting spot price is guaranteed to be

positive. In our framework, however, we can specify the factor dynamics to ensure positivity

of prices. For example, if the factors follow a Cox, Ingersoll and Ross [CIR] (1985) square-root

process, we can obtain a positive spot price process under appropriate parameter restrictions.

Assumptions 1 and 2 allow for a great deal of flexibility in specifying the factor dynamics.

In particular, we do not impose restrictions on the factor volatilities and the factor drifts

under the objective measure P. Equivalence between the risk-neutral measure Q and the

objective measure P can however impose further regularity conditions on the factor P-drifts.

2.2 Canonical form

The model as introduced above is invariant to affine transformations of the factors Xt and

hence unidentified. In particular, defining

X̃t = g +HXt (12)

3The matrix exponential is defined as eA =
∑∞

i=0

1

i!
Ai.
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with H an invertible m×m matrix, the model can be expressed equivalently in terms of X̃t,

satisfying Assumptions 1 and 2, with corresponding parameters

δ̃0(t) = δ0(t)− δ′1H−1g, δ̃1 = (H−1)′δ1, c̃Q = HcQ −HDQH−1g, D̃Q = HDQH−1.

We therefore impose restrictions on the parameters δ0(t), δ1, c
Q and DQ to obtain a canonical

form that is just-identified and maximally flexible, such that it nests all other models as a

special case. In particular, we adopt the canonical form put forward by Joslin et al. (2011)

that is based on the diagonalization of the matrix DQ using the Jordan decomposition. The

canonical form is given by the restrictions

δ0(t) is unrestricted, δ1 = ι, cQ = 0, DQ = −J(λQ), (13)

where ι denotes a vector of ones, and J(λQ) denotes the real Jordan form of a matrix with

a vector of ascendingly ordered positive eigenvalues λQ ∈ Cm, i.e. 0 < λQ1 ≤ . . . ≤ λQm. If all

elements in λQ are real and distinct, then J(λQ) = diag(λQ).

This canonical form is unique in the sense that it is no longer invariant to linear transfor-

mations, hence rendering a well-identified model. It is also maximally flexible as any model

satisfying Assumptions 1 and 2 can be linearly transformed to this canonical form (Joslin et

al., 2011).

The canonical form offers several advantages for analysis. First, it imposes all identifying

restrictions on parameters determining the factor loadings in (9). Models with the same

canonical parameters can therefore produce the same variation in the shapes of the forward

curve. This allows for an easy comparison of different models. More importantly, it allows

to identify parameters and factors from a cross-section of forward prices without directly

considering the factor dynamics. We return to this issue in more detail in Section 3. Second,

the number of free parameters is substantially reduced from (m + 1)2 to only (m + 1) free

parameters, which facilitates estimation. Third, the expressions for the factor loadings in (6),

(7), (9) and (10) can be simplified considerably.
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2.3 Factor interpretation

Since the model is invariant to affine transformations of the factors, we adopt the canonical

form (13) to ensure identification of the factors Xt and parameters. The interpretation of the

factors Xt is derived from this canonical form and therefore not necessarily informative. The

invariance property of the model, however, allows us to consider more informative transfor-

mations (12) of the canonical factors Xt. In particular, we propose a transformation of the

factors that yields the principal components of the model-implied forward curve.

The instantaneous forward curve of electricity prices as implied by the model is given by

(5). For a fixed set of k > m maturities 0 < τ1 < . . . < τk, the corresponding vector of

model-implied instantaneous forward prices ft = (ft(τ1), . . . , ft(τk))
′ satisfies

ft = af +BfXt,

where af and Bf are the correspondingly stacked factor loading coefficients (7) and (6). The

unconditional covariance matrix of ft is given by

Σf = BfΣXB
′
f ,

where ΣX is the unconditional covariance matrix of factors Xt. Note that Σf is positive

semi-definite with rank m and therefore only has m principal components related to its

non-zero eigenvalues. The m principal components are linear in Xt and can hence be used

as transformed factors X̃t. This transformation ensures that the transformed factors are

unconditionally uncorrelated and normalized to have unit variance. Furthermore, the first

transformed factor is the factor that explains most of the variation in the forward curve,

whereas subsequent factors explain most variation in the forward curve after accounting for

the preceding factors.
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2.4 Modeling factor dynamics

Our framework offers a great deal of flexibility in specifying the factor dynamics. The fac-

tors can be modeled by diffusions, jump-diffusions or Levy processes and the corresponding

volatilities can be specified flexibly. As long as the model produces well-defined factor dy-

namics satisfying the drift assumption in (4), prices of forwards are linear in the factors as

given in (8). In this paper we focus on standard affine diffusion processes to model the factor

dynamics. Affine diffusion processes are widely used in finance for their tractability and their

properties are well established.

Affine diffusions are characterized by a drift and instantaneous covariance matrix that are

linear (affine) functions of the process value. We assume that Xt follows a standard affine

diffusion process under both P and Q given by

dXt = (cM +DMXt) dt+Σ
√

diag(α+BXt) dWM
t , (14)

where M ∈ {P,Q}, WM
t denotes an m-vector of independent standard Brownian motions

under M and diag(x) denotes a diagonal matrix with the main diagonal given by the vector

x. The process Xt hence satisfies Assumption 2 and under canonical restrictions in (13) we

have cQ = 0 and DQ = −J(λQ).

The class of affine processes is very general. When we take B = O, the volatilities are

constant and the process becomes a standard Gaussian process. When B is non-zero, the

volatilities vary with the level of the factors.

Further restrictions must be imposed to ensure that the model is admissible and identified

(Dai and Singleton, 2000), making it difficult to work with (14) directly. Dai and Singleton

(2000) establish a classification of admissible affine processes based on the rank of B into

non-nested subclasses. In particular, if the process Xt is admissible with the rank of B equal

to k, the process Xt belongs to the subclass Ak(m). For each subclass, Dai and Singleton

(2000) provide a canonical characterization of the maximally flexible model that nests every

model in this class as a special case. We examine the performance of the maximally flexible

affine diffusion for every subclass Ak(m).
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For a convenient characterization of the maximally flexible affine diffusion, we first linearly

transform the factors Xt to Yt, i.e.

Yt = gY +HYXt, (15)

and then use a canonical representation of the maximally flexible model for Yt. The canonical

process Yt under both P and Q is given by

dYt = (cMY +DM
Y Yt) dt+

√
diag(αY +BY Yt) dWM

t , (16)

where M ∈ {P,Q} and DQ
Y = −HY J(λQ)H−1

Y and cQY = HY J(λQ)H−1
Y gY by Assumption

2 and the canonical restrictions in (13). We impose the admissibility conditions presented

in Appendix A to ensure admissibility and identification of the process Yt. The process for

Xt is now completely characterized by the parameters of the transformation gY ,HY and the

parameters cPY ,D
P
Y ,αY ,BY .

An important consequence of the admissibility conditions is that they potentially restrict

cross-sectional parameters λQ and hence the specification of the factor dynamics does affect

the cross-sectional performance of the model. For example, some affine dynamics rule out

complex conjugate pairs for the eigenvalues λQ (see Appendix A).

2.5 Deterministic trends and seasonal components

The intercept δ0(t) in the spot price specification (3) is allowed to be deterministically time-

varying to accommodate trends and seasonal components. For example, we may accommodate

an annual seasonal pattern using monthly dummies:

δ0(t) =

12∑
j=1

Mj(t)βj , with Mj(t) =


1 if date t is in month j

0 otherwise.

. (17)

Under the canonical form, we have a(t, τ) = δ0(t+τ) and A(t, τ1, τ2) = 1
τ2−τ1

∑12
j=1

∫ τ2
τ1
Mj(t+

s) dsβj , so that A(t, τ1, τ2) = βi for a monthly forward contract delivering in month i,
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A(t, τ1, τ2) = 1
3(βi+βi+1 +βi+2) for a quarterly contract delivering in months i, i+1 and i+2

and A(t, τ1, τ2) = 1
12

∑12
j=1 βj for a yearly contract. Additional components and alternative

specifications of the seasonal component, such as in Lucia and Schwartz (2002), can also be

incorporated straightforwardly.

3 Estimation

This section describes the procedure for estimating the latent factors and model parameters

from a panel of observed forward prices. We describe the estimation procedure for models of

the canonical form (13) using the seasonal specification in (17).

Assume that at time t = 1, . . . , T we observe nt average-based forward prices Ft(T1,t,j , T2,t,j)

with delivery periods [T1,t,j , T2,t,j ] for j = 1, . . . , nt. The number of available contracts and

their delivery periods may vary over time such that the panel of observed forward prices

is unbalanced. We assume that observed forward prices Ft(T1,t,j , T2,t,j) are measured with

a Gaussian error et,j ∼ N(0, σ2
e) that is independent across time and across different con-

tracts. By stacking all forward prices observed at time t in an nt-vector Ft, the model can be

expressed as

Ft = At +BtXt + εt, (18)

where At and Bt are the correspondingly stacked factor loading coefficients as specified in

(10) and (9) and εt ∼ N(0, σ2
εInt) is serially independent.

The model is completed by a specification of the factor dynamics, such as the affine

diffusion processes discussed before. The complete model represents a non-linear state-space

system with measurement equation (18) and a transition equation given by the factor dynam-

ics. The parameters and the factors are estimated with Quasi-Maximum Likelihood (QML)

using the Kalman filter.

The likelihood of the affine process (14) is only known in closed-form for a few special

cases. In particular, processes belonging to A0(m) are standard Gaussian processes and

hence ML estimators are obtained in closed form. In other cases, exact ML estimation is
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infeasible and we therefore use QML by approximating the transition density by a normal

distribution with the exact first and second moments implied by the affine process. The

first and second moments implied by the affine process can be calculated in closed form

(Fackler, 2000) and hence the QML estimator is consistent (Fisher and Gilles, 1996). For

QML, consistent standard errors are obtained by using the sandwich estimator of White

(1982).

3.1 Cross-sectional estimation of factors and loadings

The QML estimation procedure fully utilizes both the cross-sectional information in the fit of

the forward prices and the time-series information in the factors. The model however yields

a separation of the parameters into cross-sectional parameters that only determine the factor

loadings and dynamic parameters that determine the evolution of the factors. We exploit

this structure to estimate the factors and cross-sectional parameters by directly fitting the

forward prices as in (18) using Non-linear Least Squares (NLS).

The cross-sectional parameters and the factors are collected in the vector θc = (λQ,β,X1,

. . . ,XT ). In the first step, we estimate θc by minimizing the sum of squared residuals et(θc) =

Ft −At −BtXt:

θ̂c = argmin
T∑
t=1

et(θc)
′et(θc) (19)

using Non-linear Least Squares (NLS). Estimation can be simplified by noting that for a given

λQ the errors et(θc) are linear in β and Xt, t = 1, . . . , T . Hence, the parameters in δ0(t) and

the factors can be concentrated out by using the corresponding least squares solution. That

is, given λQ, the optimal solutions for β and the factors Xt are given by the OLS estimates

β̂(λQ) and X̂t(λ
Q) and the optimization problem in (19) now only requires a numerical

optimization over λQ. See Appendix B for details. Andreasen and Christensen (2010) show

that this NLS estimator consistently estimates the cross-sectional parameters and the factors

as the number of observed contracts nt tends to infinity.

This NLS estimator ignores the time-series information in the factors and is therefore less
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efficient but also has important benefits. First, it can be calculated fast and straightforwardly

with low computational demands. Second, the estimates are independent of the factor dynam-

ics, which facilitates model specification and interpretation. The resulting estimates of factor

loadings and factors can be used to guide the subsequent specification of the factor dynamics.

Moreover, some specifications of the factor dynamics can restrict the domain of the factor or

the cross-sectional parameters, thereby reducing the model fit of observed prices. This can be

revealed by comparing estimates of a full model with the unrestricted NLS estimates based

exclusively on cross-sectional information.

The NLS estimator does not estimate the dynamic parameters. For forecasting purposes,

the dynamic parameters can be estimated in a second step from the estimated factors com-

parable to Diebold and Li (2006). However, such a two-step procedure fails to account for

estimation uncertainty in the factor estimates in the second step and is hence less useful for

inference on the complete model.

4 Empirical analysis

The proposed modelling framework is used for an empirical analysis of a large panel of spot

and forward prices in the Nordic electricity market. The Nordic electricity market is formed

by two related markets, the “Nordpool spot” and “Nordpool ASA” markets. The “Nordpool

spot” is a physical market where participants trade electricity for the next day. The market is

referred to as a spot market but is in fact a one-day forward market. The market price, also

referred to as the “system price”, is determined by the intersection of the aggregate demand

and supply curves derived from bids by traders. “Nordpool ASA” is the financial market in

which derivatives such as futures and forward contracts are traded.4 Contracts refer to load in

megawatt hour (MWh) for a given delivery period. The main difference between the futures

and forward contracts is that futures are marked to market, that is, changes in market prices

of the contract are settled daily at each participant’s account. Forward contracts are settled

during the delivery period, not during the preceding trading period.

4As of May 2010 “Nordpool ASA” is part of NASDAQ OMX Group, Inc.
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4.1 Data description
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Figure 1: System Price and One-Year Forward Price. The figure shows the daily system
price and one-year forward price from January 3, 2005 up to December 28, 2009 in Euros/MWh. The one-year
forward price is interpolated by taking the weighted average of the traded one- and two-year forwards.

Our data set covers daily closing prices for monthly, quarterly and yearly forward contracts

and the system price over the period from January 3, 2005 up to December 28, 2009. Every

contract has a different delivery period. Monthly contracts are available with maturities

up till 5 months to start of delivery, while quarterly with and yearly contracts have longer

maturities, up to 4 years. We also incorporate the spot price series in the analysis and treat it

as a one-day forward with a one-day delivery period, that is T2 = T1+1 = t+1 in the notation

defined in (2). There is no trading during the contracts delivery period. Forward contracts

are quoted in Euro while the spot price is quoted in NOK. For consistency, we convert the

spot price to Euro using the daily NOK/EUR exchange rate.

Figure 1 shows the system price and the one-year forward price over time. The fluctuations

in the system and forward prices are quite volatile, with the system price being more volatile

than the forward. The fluctuations in both prices show a tendency to mean-revert towards a

level of about 40 Euros/MWh, where the fluctuations in the one-year forward price are more

persistent. The system price does exhibit some seasonal fluctuation with prices tending to be

higher during winter seasons, which can be attributed to weather conditions.

Table 1 display summary statistics of the system price and monthly, quarterly and yearly

forward prices. For comparison, all prices in the table are deseasonalized using monthly

dummies by adding 1
12

∑12
j=1 βj to the residuals of a null model with no factors and an intercept
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given by (17). Forward prices are interpolated by taking the weighted average of the traded

forwards with neighbouring maturities to represent prices with a fixed time to delivery. All

prices exhibit a positive skew, but there is however no sign of heavy-tails. Price fluctuations

are clearly mean-reverting as reflected by the autocorrelation coefficients and the lower price

volatility for longer maturities, i.e. longer times to the start of delivery. Price fluctuations

are however more persistent for longer maturities, which cannot be explained by a one-factor

model. More factors with differences in persistence are needed to capture short-term and long-

term variation as in e.g. Schwartz and Smith (2000). The average price tends to be slightly

higher for longer maturities, which indicates that forward premia are on average positive.

The next two subsections present the estimation results for different models. First, results

for the cross-sectional part of models with different numbers of factors m are discussed,

focusing on the model fit of the forward prices and the interpretation of the estimated factors.

Next, the estimation results for the affine factor dynamics are presented, where different affine

specifications are compared.

4.2 Cross-sectional results

We first estimate the factors Xt and the cross-sectional parameters β and λQ using Non-

Linear Least Squares as in (19). Seasonal variation is modeled by monthly dummies as

specified in (17). Different eigenvalue structures are considered, in particular both real and

complex eigenvalues and both distinct and repeated eigenvalues. The structure with the best

fit is reported.

Figure 2 show the fit of models with 1 to 5 factors relative to a model with only seasonal

dummies. Models with more factors obviously fit observed forward prices better, with di-

minishing improvements in fit when including more factors, but can potentially also lead to

over-fitting and unstable estimates. Figure 2 indicates that the marginal improvement in fit

by including more than three factors is very limited. We therefore restrict further attention

to models with one, two and three factors.

The parameters β account for the average level of the forward prices and the seasonal

variation. Figure 3 plots the estimated values of β for the null model, i.e. a model without
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Table 1: Descriptive Statistics of Electricity Prices

Descriptive statistics of the daily system price and daily forward prices of monthly (m), quarterly (q) and
yearly (y) contracts. Prices are deseasonalized by using monthly dummies covering the delivery period.
More specifically, 1

12

∑12
j=1 βj is added to the residuals of a null model with no factors and an intercept

given by (17). Forward prices are interpolated by taking the weighted average of the traded forwards with
neighbouring maturities to represent prices with a fixed time to delivery. The start and end of the delivery
periods are represented in days (d), months (m), quarters (q) or years (y). All contracts are quoted in
Euro/MWh. no. obs. denotes the total number of observation days, std. dev. the standard deviation and
ρ̂30 the 30th order autocorrelation.

delivery no. obs. mean std. dev skewness kurtosis ρ̂30

start end

System price

1d 2d 1245 38.41 12.71 0.74 3.27 0.69

Monthly forward contracts

1m 2m 1245 40.20 11.92 0.81 3.02 0.75

2m 3m 1245 41.31 11.75 0.79 2.84 0.77

3m 4m 1245 42.23 11.73 0.76 2.70 0.78

4m 5m 1245 42.86 11.70 0.76 2.67 0.79

5m 6m 1245 43.23 11.44 0.75 2.81 0.80

Quarterly forward contracts

1q 2q 1058 44.50 11.29 0.71 2.59 0.76

2q 3q 1124 44.77 9.41 0.70 2.63 0.80

3q 4q 1185 43.83 8.42 0.67 2.85 0.82

4q 5q 1245 42.73 8.67 0.40 2.81 0.87

5q 6q 1245 42.83 8.61 0.43 2.55 0.89

6q 7q 1245 42.71 8.71 0.37 2.91 0.88

7q 8q 1245 42.45 8.53 0.36 3.19 0.88

Yearly forward contracts

1y 2y 1245 42.71 8.58 0.43 2.86 0.88

2y 3y 1245 42.52 8.28 0.43 2.92 0.90
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Figure 2: Fit of Forward Prices. The plot shows the percentage of the Sum of Squared Errors
(SSE) of a model with seasonal dummies but without factors (i.e. with the spot price given by δ0(t) in (17))
explained by a model with m factors for m = 1, . . . , 5.
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Figure 3: Estimates of Monthly Dummies β. The plot shows the point estimates of the
monthly dummies in the null model, i.e. a model no factors.
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factors. The estimates clearly display a seasonal pattern, where prices are on average higher

during winter and lower during summer. The estimates for the full set of models are reported

in Table 6 in Appendix C. The seasonal pattern is very similar across different models. The

average level of the forward curve is however also affected by the average level of the factors

and hence the estimates for β differ in level across the different models.

Table 2: Cross-Sectional Parameters

The table reports the estimates of the cross-sectional parameters λQ and σε for models with one, two and
three factors. Columns denoted by cross report cross-sectional NLS estimates, whereas columns denoted
by Ak(n) report QML estimates based on the corresponding affine factor dynamics. Asymptotic standard
errors are shown in parenthesis. Estimates of λQ are expressed on a yearly basis, i.e. maturities τ are
represented in years. Estimates of β are reported in Table 6

λQ
1 λQ

2 λQ
3 σε

Panel A. 1-factor models

cross 0.16
(0.00)

4.30

A0(1) 0.16
(0.00)

4.36
(0.01)

A1(1) 0.16
(0.00)

4.36
(0.07)

Panel B. 2-factor models

cross 0.09
(0.00)

1.58
(0.02)

2.15

A0(2) 0.09
(0.00)

1.58
(0.01)

2.22
(0.00)

A1(2) 0.09
(0.01)

1.58
(0.05)

2.22
(0.03)

A2(2) 0.10
(0.01)

1.57
(0.05)

2.22
(0.03)

Panel C. 3-factor models

cross 0.03
(0.00)

2.28
(0.02)

+ 1.84
(0.02)

i 2.28
(0.02)

− 1.84
(0.02)

i 1.31

A0(3) 0.03
(0.00)

2.21
(0.02)

+ 1.84
(0.01)

i 2.21
(0.02)

− 1.84
(0.01)

i 1.35
(0.00)

A1(3) 0.04
(0.01)

3.12
(0.06)

3.15
(0.07)

1.39
(0.02)

A2(3) 0.04
(0.01)

3.12
(0.08)

3.15
(0.06)

1.39
(0.02)

A3(3) 0.04
(0.00)

2.63
(0.05)

+ 1.44
(0.03)

i 2.63
(0.05)

− 1.44
(0.03)

i 1.36
(0.02)

The estimates of λQ determine how the factors affect the forward prices and are reported

in Table 2. The factor loadings b(τ) of the instantaneous forward prices in (6) have a simple

exponential decay with maturity. Higher values of λQ produce a stronger decay and hence

forwards with longer maturities are less affected by the factors.

In Figure 4, we plot the factor loadings b(τ) as defined in (6). The factor loadings are

plotted for the model-implied principal components X̃t as defined Section 2.3 to facilitate
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Figure 4: Factor Loadings Panels (a),(b) and (c) plot the estimated factor loadings for the one-, two-

and three-factor models. The factors are represented as model-implied principal components X̃t as described
in Section 2.3.
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interpretation. The factor loadings in Figure 4 show the change in the forward curve due to

an increase in the factor by one standard deviation. The estimate of λQ1 for the one-factor

model is low, producing a slowly decaying factor loading for the forward curve, as shown in

Panel (a) of Figure 4. An increase in the factor mainly increases the general level of the

forward curve, but also tilts the forward curve downward. The estimate λQ1 decreases when

adding extra factors, but the change in the factor loading is small. The estimates of λQ2 are

larger, producing a stronger decay in the loading for the second factor. For the two-factor

model, we observe that the second model-implied principal component captures changes in

the slope of the forward curve. This pattern in the factor loading is similar in the three-factor

model. In the three-factor model, the decay parameter of the second and third factor–λQ2 and

λQ3 –are complex conjugates. The factor loading plot in Panel (c) of Figure 4 shows that the

third factor mainly accounts for variations in the short end of the forward curve by producing

a hump.

The time-series of the model-implied principal components X̃t are plotted in Figure 5.

The graphs indicate that the factor estimates are hardly affected by including extra factors,

e.g. the estimated first factor is very similar across the three models. The first and second

estimated factor have a similar volatility and persistence, whereas the fluctuations in the third

factor are much more transitory.

In Table 2, we also report the QML estimates based on affine factor dynamics. As dis-

cussed in Section 2.4, admissible affine diffusions are classified in non-nested subclasses Ak(m).

For each subclass we estimate the maximally flexible model, which for sake of brevity we also

indicate by Ak(m). The QML estimator combines both cross-sectional and time-series infor-

mation and hence gives up a bit on cross-sectional fit to obtain a better fit of the time-series

properties. This small reduction in cross-sectional fit is reflected by the increased estimate

for the residual variance σε when compared to the cross-sectional estimates.

The QML estimates are very close to the cross-sectional NLS estimates for the one- and

two-factor case. The three-factor models show larger differences. In particular, the estimated

eigenvalues for the A1(3) and A2(3) produce a near-repeated pair of large eigenvalues instead of

a complex pair and a relatively poor fit. This can be explained by the admissibility conditions
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Figure 5: Time-Series of Estimated Factors Panels (a),(b) and (c) show the time series of the
estimated factors for the one-, two- and three-factor models. The factors are represented as model-implied
principal components X̃t as described in Section 2.3.
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in (A.1) that also restrict the risk-neutral drift of the factor dynamics and hence the factor

loadings. Still, the factor loadings are very similar when comparing between different factor

dynamics and the cross-sectional estimates (see Appendix C for plots of the factor loadings).

4.3 Factor dynamics

Affine diffusions for the one-factor model are classified into two subclasses A0(1) and A1(1),

corresponding to a Gaussian process and a CIR square-root process respectively. The key

difference between these processes is that A0(1) has constant volatility, whereas the volatility

for A1(1) varies with the level of the factor and hence produces conditional heteroscedasticity.

For the one-factor model, Table 7 presents the parameter estimates of A0(1) and A1(1) with

the corresponding (quasi) log-likelihood value.

The log-likelihood value for A1(1) is substantially higher than for A0(1), indicating a much

better fit. Since the two models are not nested, we cannot apply standard likelihood ratio

tests to infer whether the superior fit of A0(1) is significant. Instead we use likelihood ratio

tests for non-nested models as developed by Vuong (1989) to test the null hypothesis that

two competing models are equally close to the true data generating process. Table 3 reports

the tests outcomes. Under the null hypothesis, the test statistic has an asymptotic standard

normal distribution. The test statistic for testing A1(1) against A0(1) equals 3.62, which

implies that the superior fit of A0(1) is highly significant.

For the two-factor case we have three subclasses A0(2), A1(2) and A2(2). The A0(2) is

again equivalent to a Gaussian process, where the volatility is constant. At the other end of

the spectrum, the model A2(2) is a bivariate generalization of the CIR square-root process,

also known as the correlated square-root (CSR) process (Dai and Singleton, 2000), where

the volatility varies with the levels of the two factors. Admissibility conditions (A.1) on

the parameters of A2(2) restrict the correlation between the factors. Hence the empirical

performance of A2(2) versus A0(2) will depend on a tradeoff between time-varying volatilities

versus flexible correlations, respectively (Dai and Singleton, 2000). The A1(2) can be viewed

as an intermediate case. The volatilities in A1(2) are time-varying, but restricted to vary only

with the level of one particular linear combination of the factors. This yields more flexibility
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for the correlation between the factors.

The parameter estimates and corresponding log-likelihood values for the dynamics in

the two-factor model are reported in Table 8. The log-likelihood values indicate a superior

fit for models A1(2) and A2(2) with time-varying volatility over the A0(2) with constant

volatility. These results are confirmed by the non-nested likelihood ratio tests in Table 3,

where the superior fit for A1(2) and A2(2) over A0(2) is indeed significant. Moreover, the

model with two correlated square-root diffusions, A2(2) also significantly outperforms the

A1(2). Finally, we see that four parameters are estimated at their boundary values as imposed

by the admissibility conditions (A.1).

Four subclasses for the factor dynamics can be distinguished in the three-factor model.

Besides the Gaussian model A0(3) and the CSR model A3(3), we have two intermediate cases

A1(3) and A2(3) with volatility driven by one and two factors, respectively. The parameter

estimates and corresponding log-likelihood values for the 3-factor dynamics are reported in

Table 9. The log-likelihood values indicate a superior fit of Gaussian model A0(3) over all

models with time-varying volatility. This difference in fit is indeed significant as indicated

by the likelihood ratio in Table 3. Particularly the performance of A1(3) and A2(3) is weak,

which is consistent with the relatively poor fit of the observed forward prices in Table 2.

Moreover, Table 9 shows that the admissibility conditions have an important impact on

parameter estimates of A3(3), where numerous parameters have estimated values equal to

their boundary values.

4.4 Forward premia

Forward prices reflect expectations about the average spot price over the delivery period of the

contract, but also incorporate a forward premium to compensate for associated risks. Hence

the forward price can be decomposed into an expectations part and a forward premium as

Ft(T1, T2) = EP
t

(
1

T2 − T1

∫ T2

T1

Ss ds

)
+ fpt(T1, T2).
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Table 3: Likelihood ratio tests of factor specifications

The table reports the likelihood ratio tests for non-nested models by Vuong (1989) to test the null hypothesis
that two competing models are equally close to the true data generating process. The test for two competing
models A and B are indicated in the column hypothesis by “A vs. B”. Under the null hypothesis, the test
statistic has an asymptotic standard normal distribution. The test statistic and the corresponding p-value
are reported in columns stat and p-value. A positive test statistic indicates a superior fit of model A over
model B.

hypothesis stat p-value

A1(1) vs. A0(1) 3.62 0.00

A1(2) vs. A0(2) 1.22 0.11

A2(2) vs. A0(2) 3.64 0.00

A2(2) vs. A1(2) 2.76 0.00

A1(3) vs. A0(3) -2.87 1.00

A2(3) vs. A0(3) -2.78 1.00

A3(3) vs. A0(3) -1.89 0.97

A2(3) vs. A1(3) 0.93 0.18

A3(3) vs. A1(3) 3.45 0.00

A3(3) vs. A2(3) 3.28 0.00

The expectations part represents the expected spot price over the delivery period under the

objective measure P and is given by

EP
t

(
1

T2 − T1

∫ T2

T1

Ss ds

)
= AP(t, T1 − t, T2 − t) +BP(T1 − t, T2 − t)′Xt,

where AP(t, τ1, τ2) and BP(τ1, τ2) are obtained from (10) and (9) by replacing the risk-neutral

parameters cQ and DQ by their objective counterparts cP and DP, respectively. The forward

premium and is given by

fpt(T1, T2) =
[
A(t, T1 − t, T2 − t)−AP(t, T1 − t, T2 − t)

]
+
[
B(T1 − t, T2 − t)−BP(T1 − t, T2 − t)

]′
Xt

and is a linear function of the factors. Hence the forward premium is generally non-zero and

time-varying. However, all forward premia are constant when the risk-neutral and objective

mean-reversion matrices are identical, i.e. DP = DQ. If in addition cP = cQ, then all forward

premia are zero.
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Figure 6: Time-Series of Forward Premium The figure shows the daily system price, one-year
forward price together with the forward premium implied by estimated A0(2) model from January 3, 2005
up to December 28, 2009 in Euros/MWh. The one-year forward price is interpolated by taking the weighted
average of the traded one- and two-year forwards.

We calculate the forward premium on a one-year forward as implied by all estimated

models. As an example, Figure 6 plots the forward premium implied by the estimates of

the A0(2) model together with the system price and the interpolated one-year forward price.

The estimated forward premium is clearly time-varying and regularly changes sign, with a

negative forward premium in 2005 and 2009 and a predominantly positive forward premium

in 2006 and 2008. Moreover, the forward premium strongly comoves with the level of the

system and forward prices.

Table 4 presents a comparison of the estimated risk premia between all models. The

estimated forward premia differ in level and variability across different models, but show

strong comovement as reflected by the high correlation. Correlations between the forward

premia and the model-implied principal components reveal a strong comovement between the

forward premium and the level of the forward curve; the forward premium is high when the

forward curve is high.

Next, we test the hypotheses that all forward premia are constant or zero. Constant

forward premia implies DP = DQ , whereas zero forward premia implies DP = DQ and

cP = cQ. We construct likelihood ratio tests by reestimating all models under these sets

of restrictions. This testing approach has two important advantages. First, the hypotheses

about forward premia are tested jointly on all forward prices. Secondly, it fully exploits the

information in the panel of observed prices.
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Table 4: Properties of the estimated 1-year forward premium

The table reports the properties of the forward premium on a one-year forward contract that starts delivering
after one year. Ak(m) denotes the maximally flexible affine model of the corresponding subclass. The mean
(mean) and standard deviation (std.) of the implied forward premium are expressed in Euro/MWh. The
model-implied principal components are based on the cross-sectional NLS estimates of the 3-factor model
and denoted by level, slope and hump.

A0(1) A1(1) A0(2) A1(2) A2(2) A0(3) A1(3) A2(3) A3(3)

A. descriptive statistics

mean 5.60 1.17 1.08 2.00 4.19 -7.96 3.37 9.27 4.56

std 5.11 6.35 8.62 7.07 4.05 6.81 7.81 5.40 6.24

B. correlation matrix

A0(1) 1.00

A1(1) 1.00 1.00

A0(2) 1.00 1.00 1.00

A1(2) 0.99 0.99 0.99 1.00

A2(2) 0.97 0.97 0.97 0.92 1.00

A0(3) 0.94 0.94 0.95 0.88 1.00 1.00

A1(3) 0.96 0.96 0.97 0.91 1.00 1.00 1.00

A2(3) 0.89 0.89 0.90 0.82 0.98 0.99 0.98 1.00

A3(3) 0.97 0.97 0.97 0.92 1.00 0.99 1.00 0.97 1.00

C. correlation with model-implied principal components

level 0.95 0.95 0.95 0.92 0.95 0.93 0.96 0.89 0.96

slope 0.03 0.03 0.05 -0.10 0.24 0.33 0.25 0.44 0.23

hump 0.31 0.30 0.29 0.37 0.17 0.16 0.15 0.10 0.15
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Table 5 reports the results. For all three-factor models, we reject both hypotheses in

favour of time-varying risk premia. For the one- and two-factor models, the evidence is more

mixed. All in all however, the test results indicate the presence of time-varying risk premia for

most models. This finding is consistent with Longstaff and Wang (2004), who find significant,

time-varying forward premia in short-maturity electricity forward prices of the Pennsylvania,

New Jersey, and Maryland (PJM) electricity market.

Table 5: Test of forward premia

The table reports per model the likelihood ratio tests for the constant forward premia hypothesis and the
zero forward premia hypothesis. Each model is reestimated under the corresponding hypothesis and its
log-likelihood value is compared against the unrestricted model. The column stat reports the likelihood
ratio test statistic given by 2(logLunrest− logLrest), where Lunrest and Lrest denote the likelihood value of
the unrestricted and restricted model, respectively. Under the null hypothesis, the test statistic follows an
asymptotic χ2

df distribution, with reported degrees of freedom (df) and the corresponding p-value (p-value).
Ak(m) denotes the maximally flexible affine model of the corresponding subclass.

constant forward premia zero forward premia

DP = DQ DP = DQ and cP = cQ

stat df p-value stat df p-value

A0(1) 1.56 1 0.21 2.21 2 0.33

A1(1) 7.14 1 0.01 7.90 2 0.02

A0(2) 10.57 4 0.03 10.98 6 0.09

A1(2) 9.14 3 0.03 9.47 5 0.09

A2(2) 3.79 4 0.43 3.79 5 0.58

A0(3) 38.87 9 0.00 44.08 12 0.00

A1(3) 27.07 7 0.00 36.42 10 0.00

A2(3) 19.24 7 0.01 19.42 10 0.04

A3(3) 42.00 9 0.00 34.38 12 0.00

5 Option Pricing

Models of electricity prices are widely used for pricing and hedging of electricity derivatives.

Beyond forwards and futures a wide variety of other electricity contracts such as options are

traded via the exchange or OTC. The Nordpool market offers trading in standardized options

on electricity forwards. Our modelling framework generates tractable expressions for option

prices by using standard affine factor dynamics. In particular, we exploit the results of Duffie

et al. (2000) to obtain quasi-analytical pricing formulae for European options on forwards.
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Arbitrage-free prices of European options are obtain by applying the pricing equation (1)

to the option payoff. Option prices can be expressed as simple functions of the transform

Ha,b0,b1,c,Xt,t,T (y) = EQ
t

(
ea
′XT (b0 + b′1XT )I{c′XT≤y}

)
, (20)

where IA denotes the indicator function. For an affine process Xt, Duffie et al. (2000) show

that the Fourier transform of (20) is know in closed form and given by

Ha,b0,b1,c,Xt,t,T (u) ≡
∫ ∞
−∞

eiuy dHa,b0,b1,c,Xt,t,T (y) = Φ(a+ iuc, b0, b1,Xt, t, T ),

with i2 = −1 and

Φ(u, v0,v1,Xt, t, T ) ≡ EQ
t

(
eu
′XT (v0 + v′1XT )

)
= eaΦ(t)+bΦ(t)′x

(
cΦ(t) + dΦ(t)′x

)
,

where the functions aΦ(t), bΦ(t), cΦ(t) and dΦ(t) solve a system of ODEs given in Appendix

D. Hence applying the Fourier inversion formula gives

Ha,b0,b1,c,Xt,t,T (y) =
Φ(a, b0, b1,Xt, t, T )

2

− 1

π

∫ ∞
0

Im[Φ(a+ ivc, b0, b1,Xt, t, T )e−ivy]

v
dv, (21)

where Im(x) denotes the complex part of x ∈ C. The evaluation of (21) just requires a

numerical integration over one dimension.

The price of a European call and put option at time t with expiry date S on a forward

that delivers over [T1, T2], with t ≤ S ≤ T1 ≤ T2, are now given by

Ct = e−r(S−t) EQ
t

(
[FS(T1, T2)−K]+

)
= e−r(S−t)H0,A−K,B′,−B′,Xt,t,S(A−K),

Pt = e−r(S−t) EQ
t

(
[K − FS(T1, T2)]+

)
= e−r(S−t)H0,K−A,−B′,B′,Xt,t,S(K −A),

respectively.
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6 Conclusion

This paper presents a tractable class of arbitrage-free models for the term structure of elec-

tricity prices where forward prices are linear functions of the factors. The class offers much

flexibility in the specification of the factor dynamics. By adopting well-known processes such

as affine processes for the specification of the factors, we obtain additional tractability for

estimation and option pricing.

Empirical results for daily forward prices of the Nordpool market show that forward prices

can be adequately modeled with three factors. Changes in the level, slope and curvature are

identified as the most important sources of fluctuations in the forward curve of electricity

prices. We examine the ability of affine factor processes to describe the dynamics in elec-

tricity prices and find that affine factor dynamics that allows for time-varying volatilities fit

significantly better than the Gaussian dynamics for the one- and two-factor models. For the

three-factor models, we find the opposite. This finding is consistent with the conditional

volatility- correlation flexibility trade-off by Dai and Singleton (2000) as well as a flexibility

trade-off between volatility and factor loadings.

Our class of models provides a tractable and flexible framework for pricing, hedging and

managing risks related to electricity prices. The class imposes only mild conditions on the

factor dynamics, thereby offering a great deal of flexibility. Extra tractability is gained by

using affine factor dynamics. In particular, the results of Duffie et al. (2000) can be used to

obtain quasi-analytical prices for common types of electricity derivatives such as e.g. options

on forwards. Another important advantage of the framework is allows for a straightforward

specification of models featuring unspanned stochastic volatility, i.e. volatility that is not

completely spanned by forward prices, since prices of forwards and futures do not depend

on the factor volatilities. Trolle and Schwartz (2009) find strong evidence for unspanned

volatility in the related commodity market of NYMEX crude oil derivatives. Whether this is

the case for electricity markets remains an open question.
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A Admissibility conditions

The process Yt follows a canonical representation of the maximally flexible by assuming that

HY lower triangular if k = 0 and

cPY ,i, c
Q
Y ,i ≥

1

2
, αY ,i = 0, BY ,ii = 1, i = 1, . . . , k,

DP
Y ,ij , D

Q
Y ,ij ≥ 0, BY ,ij = 0, j = 1, . . . , k, j 6= i,

DP
Y ,ij , D

Q
Y ,ij = 0, BY ,ji ≥ 0, αY ,j = 1, j = k + 1, . . . ,m, (A.1)

BY ,ij = 0 i = 1, . . . ,m, j = k + 1, . . . ,m.

These restrictions ensure admissibility and identification of the process Yt with well-behaved

risk premia (Cheredito et al., 2007).5

A.1 Effect on factor loadings

We now demonstrate how affine factor dynamics that allow for stochastic volatility can restrict

the factor loadings for forwards. As discussed in Section 2.2, the factor loadings for forwards

in (6) and (9) are determined by the eigenvalue structure of the risk-neutral mean-reversion

matrix DQ and hence that of DQ
Y . The admissibility conditions for affine diffusions in (A.1)

however impose conditions on DQ that can restrict its eigenvalue structure.

For example the A2(2) model requires that DQ
Y ,12, D

Q
Y ,21 ≥ 0 in

DQ
Y =

DQ
Y ,11 DQ

Y ,12

DQ
Y ,21 DQ

Y ,22

 .

Using the quadratic formula, the eigenvalues of DQ
Y are given by

λi = 1
2(DQ

Y ,11 +DQ
Y ,22)± 1

2

√
(DQ

Y ,11 −D
Q
Y ,22)2 + 4DQ

Y ,12D
Q
Y ,21,

5Our canonical characterization is almost identical to that in Cheridito et al. (2007), but for k = 0 we
assume HY lower triangular rather than DP

Y . This still yields a well-identified model, but no longer requires
the assumption that DP is diagonalizable.

33



which are restricted to be real since DQ
Y ,12, D

Q
Y ,21 ≥ 0. By similar reasoning it follows that

e.g the model A2(3) does not allow for complex eigenvalues.

B Estimation of β and Xt

Using (17), we can represent (18) as the following regression equation

Ft = Qtβ +Bt(λ
Q)Xt + εt, t = 1, . . . , T (B.1)

where Qt is the matrix of monthly dummies corresponding to the contracts in Ft. For a given

λQ, the estimates of β and Xt defined in (19) are equivalent to OLS estimates β̂(λQ) and

X̂t(λ
Q) of the regression given by (B.1). Hence β and Xt can be concentrated out of the

criterion function in (19) by plugging in the OLS solutions. In particular, the estimate of λQ

defined in (19) is given by

λ̂Q = argmin
T∑
t=1

e∗t (λ
Q)′et(λ

Q), (B.2)

e∗t (λ
Q) = Ft − Qtβ̂(λQ) + Bt(λ

Q)X̂t(λ
Q). The corresponding estimates of β and Xt are

obtained by β̂(λ̂Q) and X̂t(λ̂Q).

The regression in (B.1) will be large for typical sample sizes as it includes many regressors.

The calculation of the OLS estimates for β and X1, . . . ,XT can be simplified considerable

by using the Frisch-Waugh theorem (see e.g. Greene (2003)) and reduces to running a series

of sequential small-scale regressions. The procedure is given by the following steps:

1. Regress Ft and Qt on Bt for all t = 1, . . . , T to obtain the residuals

vt = Ft −Bt

(
Bt
′Bt

)−1
Bt
′Ft Wt = Qt −Bt

(
Bt
′Bt

)−1
Bt
′Qt

and stack them as v̄ = (v′1, . . . ,v
′
T )′ and W̄ = (W ′

1, . . . ,W
′
T )′.

2. Regress the stacked residuals v̄ on the stacked residuals W̄ to obtain the OLS estimate
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β̂(λQ) and the residuals e∗t (λ
Q):

β̂(λQ) =
(
W̄ ′W̄

)−1
W̄ ′v̄ e∗t (λ

Q) = vt −Wtβ̂(λQ).

3. (optional) Regress Ft −Qtβ̂(λQ) on Bt to estimate the factors Xt:

X̂t(λ
Q) =

(
Bt
′Bt

)−1
Bt
′
(
Ft −Qtβ̂(λQ)

)
.

C Estimation results

The estimates of the cross-section parameters λQ and σε for all models are reported in Table

2. Table 6 reports the complementary estimates of the coefficients for the seasonal dummies

β. Figures 7, 8 and 9 plot the corresponding factor loadings for all models. The dynamic

parameters and the quasi log-likelihood values for the one-, two- and three-factor models are

reported in Tables 7, 8 and 9.
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Figure 7: Factor loadings 1-factor models Panels (a),(b) and (c) plot the estimated factor
loadings for the one-, two- and three-factor models. The factors are represented as model-implied principal
components X̃t as described in Section 2.3.
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Figure 8: Factor loadings 2-factor models Panels (a),(b) and (c) plot the estimated factor
loadings for the one-, two- and three-factor models. The factors are represented as model-implied principal
components X̃t as described in Section 2.3.
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Figure 9: Factor loadings 3-factor models Panels (a),(b) and (c) plot the estimated factor
loadings for the one-, two- and three-factor models. The factors are represented as model-implied principal
components X̃t as described in Section 2.3.
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Table 7: Parameter Estimates of the 1-Factor Dynamics

The table reports the estimates of the parameters of affine factor dynamics for the 1-factor model. The
models, denoted by Ak(1) for k = 0, 1 denote the maximally flexible model of the corresponding subclass
in the the classification of Dai and Singleton (2000). Parameter estimates and corresponding asymptotic
standard errors are reported in the column denoted estim. and s.e., respectively. The (quasi) log-likelihood
value is reported in the row denoted by log L.

A0(1) A1(1)

estim. s.e. estim. s.e.

cQY 0.00 - 0.50 0.00

DQ
Y -0.16 0.00 -0.16 0.00

δY 15.15 0.50 10.33 0.18

cPY -0.75 0.66 2.41 0.82

DP
Y -0.77 0.59 -1.07 0.33

Log L -73882.43 -73835.68

Table 8: Parameter Estimates of the 2-Factor Dynamics

The table reports the estimates of the parameters of affine factor dynamics for the 2-factor model. The
models, denoted by Ak(2) for k = 0, 1, 2 denote the maximally flexible model of the corresponding subclass
in the the classification of Dai and Singleton (2000). Parameter estimates and corresponding asymptotic
standard errors are reported in the column denoted estim. and s.e., respectively. The (quasi) log-likelihood
value is reported in the row denoted by log L.

A0(2) A1(2) A2(2)

estim. s.e. estim. s.e. estim. s.e.

cQY ,1 0.00 - 7.84 2.88 0.50 0.00

cQY ,2 0.00 - 0.00 - 0.50 0.00

DQ
Y ,11 -0.09 0.00 -1.58 0.05 -0.30 0.04

DQ
Y ,21 0.15 0.09 -0.67 0.27 0.36 0.04

DQ
Y ,12 0.00 0.00 0.00 - 0.72 0.12

DQ
Y ,22 -1.58 0.01 -0.09 0.01 -1.37 0.14

δY ,1 10.47 1.14 9.14 2.00 0.63 0.16

δY ,2 21.24 0.84 1.62 0.25 16.42 1.10

cPY ,1 -0.52 0.62 6.41 3.77 4.07 6.42

cPY ,2 0.34 0.68 7.22 5.10 0.50 0.00

DP
Y ,11 -1.11 0.64 -1.26 0.51 -0.68 0.75

DP
Y ,21 0.78 0.79 -9.81 2.66 0.43 0.13

DP
Y ,12 -2.75 1.23 0.00 - 0.00 0.00

DP
Y ,22 -1.00 1.08 -1.04 0.46 -1.79 0.50

β21 0.00 - 12.26 4.06 0.00 -

Log L -57489.01 -57461.18 -57407.47

38



Table 9: Parameter Estimates of the 3-Factor Dynamics

The table reports the estimates of the parameters of affine factor dynamics for the 3-factor model. The
models, denoted by Ak(3) for k = 0, 1, 2, 3 denote the maximally flexible model of the corresponding subclass
in the the classification of Dai and Singleton (2000). Parameter estimates and corresponding asymptotic
standard errors are reported in the column denoted estim. and s.e., respectively. The (quasi) log-likelihood
value is reported in the row denoted by log L.

A0(3) A1(3) A2(3) A3(3)

estim. s.e. estim. s.e. estim. s.e. estim. s.e.

cQY ,1 0.00 - 1.08 0.42 0.50 0.00 0.50 0.00

cQY ,2 0.00 - 0.00 - 0.50 0.00 0.50 0.00

cQY ,3 0.00 - 0.00 - 0.00 - 0.50 0.00

DQ
Y ,11 -0.03 0.00 -3.12 0.06 -3.05 0.09 -1.98 0.10

DQ
Y ,21 0.29 0.11 2.67 1.03 3.14 6.90 0.00 0.00

DQ
Y ,31 -1.73 0.25 21.46 9.53 71.11 17.84 8.98 1.11

DQ
Y ,12 0.00 0.00 0.00 - 0.06 0.02 0.38 0.04

DQ
Y ,22 -0.39 0.12 -0.04 0.00 -0.11 0.13 -1.29 0.07

DQ
Y ,32 -3.06 0.23 0.10 0.05 -1.29 0.41 0.00 0.00

DQ
Y ,13 0.00 0.00 0.00 - 0.00 - 0.00 0.00

DQ
Y ,23 2.19 0.09 0.07 0.00 0.00 - 1.42 0.13

DQ
Y ,33 -4.03 0.12 -3.15 0.08 -3.15 0.06 -2.04 0.14

δY ,1 28.97 2.25 -9.64 3.59 -7.95 6.53 0.30 0.04

δY ,2 42.64 1.93 3.48 0.30 2.59 1.81 -2.58 0.29

δY ,3 25.52 0.85 10.07 5.36 2.54 0.52 5.87 0.56

cPY ,1 -7.83 2.48 1.86 0.94 0.54 0.30 4.31 14.41

cPY ,2 -0.41 3.53 50.15 50.17 7.43 29.49 10.64 57.13

cPY ,3 5.98 3.01 14.84 25.57 11.75 8.01 22.24 32.19

DP
Y ,11 0.37 1.07 -3.82 1.90 -4.16 3.80 -2.79 9.99

DP
Y ,21 0.61 1.02 24.07 22.47 9.87 35.16 0.00 0.00

DP
Y ,31 -4.11 1.26 40.12 20.22 125.78 53.31 22.74 8.88

DP
Y ,12 1.92 1.84 0.00 - 0.11 0.15 0.41 1.86

DP
Y ,22 0.20 1.76 -1.94 1.34 -0.93 0.45 -0.59 3.05

DP
Y ,32 -7.81 1.97 -0.68 1.42 -4.22 1.72 2.52 3.34

DP
Y ,13 8.66 2.35 0.00 - 0.00 - 0.00 0.00

DP
Y ,23 3.14 3.16 -6.80 4.21 0.00 - 0.00 0.00

DP
Y ,33 -13.28 2.51 -6.21 1.77 -6.40 3.11 -9.86 4.30

β21 0.00 - 13.70 4.69 0.00 - 0.00 -

β31 0.00 - 9.98 11.25 115.36 61.55 0.00 -

β32 0.00 - 0.00 - 0.84 1.09 0.00 -

Log L -45995.29 -46715.73 -46696.32 -46232.82
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D Option pricing details

The functions aΦ(t) and bΦ(t) solve the following recursive system of ODEs

dbΦ

dt
(t) = −DQ′bΦ(t)− 1

2

n∑
i=1

[
bΦ(t)′Σ

]2
i
βi,

daΦ

dt
(t) = −cQ′bψ(t)− 1

2

n∑
i=1

[
bΦ(t)′Σ

]2
i
αi,

with αi such that α = (α1, . . . , αm)′, βi such that B = (β1, . . . ,βm)′ and [x]i denotes the

i-th element of vector x. The functions aΦ(t) and bΦ(t) satisfy the boundary conditions

bΦ(T ) = u, aΦ(T ) = 0, dΦ(T ) = v1 and cΦ(T ) = v0.

The functions cΦ(t) and dΦ(t) solve the following recursive system of ODEs

ddΦ

dt
(t) = −DQ′dΦ(t)− 1

2

n∑
i=1

[
dΦ(t)′Σ

]2
i
βi,

dcΦ

dt
(t) = −cQ′dψ(t)− 1

2

n∑
i=1

[
dΦ(t)′Σ

]2
i
αi,

dΦ(T ) = v1 and cΦ(T ) = v0.
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