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Abstract. Model uncertainties and/or model instabilities are deeply-rooted in real-

life forecasting challenges. More often than not and particularly in soft sciences, the

underlying data-generating process is simply beyond us. When it comes to forecast-

ing, this makes model-selection uncomfortably restrictive in dynamic environments. An

obvious alternative to choosing single best forecasting method is to combine forecasts

from different models. By now it is well established that combining different forecasts

delivers results which are “better than the best”. There are numerous ways in which

forecasts can be combined, with little theoretical underpinnings. This paper introduces

the R package ForecastCombinations. The aim is to describe the arguably most com-

mon ways in which forecasts can be combined, and to demonstrate the implementation

thereof. Among other combination schemes available, package ForecastCombinations

allows for variance-based, constrained least-squares, information-criteria based or the

recently advocated complete-subset-regression.

1. Introduction

In the business of forecasting, precision is key. The advent of “black-box” statistical

learning methods such as Artificial Neural Networks testifies to the fact that one often

prefers a more accurate forecast even over an explainable one. Especially in soft sciences,

the admission that we simply don’t know what is the underlying data-generating-process

(DGP) is making headway. Indeed, some would argue that such, one real underlying

DGP, does not even exist. Our models, almost by definition, are simple and incomplete.

In the field of Econometrics, Hansen (2005) soberly phrase this: “models should be viewed

as approximations, and econometric theory should take this seriously”. If we now aban-

don the quest for a one true correctly specified model, then the door is open for us to

use many models. In the context of forecasting, this means combining forecasts from

different models. By now there is ample empirical evidence on the merits of combining

forecasts. Put bluntly, a combined forecast is more accurate than any of it’s components.

The reason for the improvement brought about by combining forecasts is not theoret-

ically grounded. One explanation is that we simply “hedge” against model risk. In a

constantly changing environment different forecasting models deliver different results at

different time periods, and for different choices of data inputs. By combining different

forecasts we reduce the risk of choosing a forecasting model which is fairly accurate when
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evaluated using some validation sample, yet proves unreliable when applied using new

data. Forecasts can be biased, partly or all through the sample and those biases are less

likely to apply in full when they are combined.

The idea of “hedging” against model risk by means of combining different forecasts is

intuitive and appealing. Mingled with accuracy gains, it is widely adopted in macroeco-

nomics and finance, with application abound. Magnus and Wang (2014) explore growth

determinants, Stock and Watson (2004) use forecast combination for Output forecasting,

Wright (2009) and Kapetanios et al. (2008) for inflation forecasting, Avramov (2002),

Rapach et al. (2009) and Ravazzolo et al. (2007) for forecasting stock returns, Wright

(2008) for exchange rate forecasts, Andrawis et al. (2011) for forecasting inbound tourism

figures, and Nowotarski et al. (2014) and Raviv et al. (2015) for electricity price forecast-

ing. More recently, forecast combinations have been applied not only in “first moment”

applications, but for higher moments as well. For example in Christiansen et al. (2012)

for volatility forecasting, and Opschoor et al. (2014) for Value-at-Risk forecasting.

The literature is already five decades old, going back to the seminal papers of Crane

and Crotty (1967) and Bates and Granger (1969). Yet even in recent past, papers dis-

cussing new combination techniques are published in reputable journals and stimulate

further research still (Hansen 2007, 2008, Hansen and Racine 2012, Elliott et al. 2013,

Morana 2015, Cheng and Yang 2015). Two extensive reviews of the literature, techniques

and applications of forecast combinations are Clemen (1989) and Timmermann (2006).

With this motivation in mind, it is somewhat surprising to see the very few packages

that are devoted to this subject in R 1. The ForecastCombinations package aims to fill

some of this void. The paper presents the functionalities made available and demonstrates

how to implement them.

The ForecastCombinations package was created in version 3.1.0 of R , and depends

on the following three packages: quantreg, quadprog and utils. It is available from

the Comprehensive R Archive Network (CRAN) at https://cran.r-project.org/web/

packages/ForecastCombinations/index.html.

The remainder of this paper is structured as follows. Section 2 describes the possible

ways in which forecasts can be combined, and are implemented in the ForecastCombi-

nations package. Section 3 provides a demonstration, an R implementation of each of

those methods presented in the Section 2. We use the Boston MASS dataset as empirical

example (the data is available from the MASS package). The article is concluded with a

discussion in Section 4.

1Notable exceptions are Raftery and Painter (2005) who created the BMA package (Bayesian Model

Averaging, and the hts package written by Hyndman et al. (2015), which allows optimal combination

weights for forecasts of hierarchical time series.

https://cran.r-project.org/web/packages/ForecastCombinations/index.html
https://cran.r-project.org/web/packages/ForecastCombinations/index.html
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2. Forecast combinations

To fix notations, denote FN×P matrix of forecast with dimension N× P where N is the

number of rows and P is the number of columns (so we should have P forecasts at each

point in time). Denote fi as the forecast obtained using model i, i ∈ {1 . . . P}. Denote

the weight given to that forecast in the overall combined forecast as wi, and the combined

forecast as f c.

2.1. Frequently used schemes for forecast combinations.

(A) Simple average. The most natural approach to combine forecasts is using the mean

of all those forecasts. Over the years this innocent approach have been proven as

an excellent benchmark, despite or perhaps because of its simplicity (Genre et al.

2013, for example). The combined forecast is given by

f c =
1
P

P

∑
i=1

fi. (1)

Of course other location measures, perhaps less sensitive to outliers such as the

median could also be used.

(B) Ordinary Least Squares (OLS) regression. An idea put up by Crane and Crotty

(1967) and was successfully driven to the forefront by Granger and Ramanathan

(1984). Using this approach, the combined forecast is not a function of P only as

in the simple average, but is a linear function of the individual forecasts whereby

the parameters are determined using a regression of the individual forecasts on

the target itself:

y = α +
P

∑
i=1

βi fi + ε, (2)

Note that we need to allocate a portion from of forecasts to be used as a learning

period, a reserved portion of forecasts is needed for all subsequently presented

combination schemes. Once we obtain our estimates, parameters are estimated,

the combined forecast is then given by

f c = α̂ +
P

∑
i=1

β̂i fi, (3)

An advantages of the OLS forecast combinations is that the combined forecast

is unbiased, even if one of the individual forecasts is. A disadvantage is that

the resulting weights can be hard to interpret. Especially if the coefficients are

non-convex.2

2if the combination of two individual forecasts is not convex, the resulting combined forecast will

lie between those individual forecasts. As an example, we can look at the first quarter (2014 or 2015)

GDPplus series estimate, published by the Federal Reserve Bank of Philadelphia. The combined pre-

diction of two individual estimates of the US GDP; one based on the expenditure-side and one based

on the income-side, lied above the sum of those two estimate. Intuitively, this is hard to communicate

(https://www.philadelphiafed.org/research-and-data/real-time-center/gdpplus).

https://www.philadelphiafed.org/research-and-data/real-time-center/gdpplus
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(C) Least Absolute Deviation (LAD) regression. The coefficients in equation (3) are

estimated by way of minimizing the sum of squared errors in equation ((B)).

We may want to estimate those coefficients differently, minimizing different loss

function, for example the absolute sum of squares. The reason is best explained

using an example. Say we have a model that performs well in general, yet every

now and then misses the target by a very large margin. Such a model would

be weighted more heavily under the LAD scheme than under the OLS scheme

since those large but infrequent errors will be more heavily penalized using OLS.

Whether this is beneficial depends on the user’s preference, how costly is it to

miss the target given the problem at hand.

(D) Constrained Least Squares (CLS) regression. Naturally, since all forecasts aim at

the same target, they will be correlated, sometimes very much so. High correla-

tion can lead to weights which are unstable if equation (3) is estimated without

constraints, a problem sometimes dubbed as ”bouncing betas“. CLS addresses

this issue by minimizing the sum of squared errors under some additional con-

straints. Specifically, we constrain the estimated coefficients {βi}, allowing only

for positive solutions: βi ≥ 0 ∀i, and to sum up to one: ∑P
i=1 βi = 1. The solu-

tion requires numerical minimization, but good optimization algorithms are at the

ready. The package relies on the function solve.QP available from the quadprog

package (Turlach and Weingesse 2013).

Theoretically, the additional constraints set CLS sub-optimally compared to

the OLS. It lacks the good asymptotic properties admitted by the OLS. However,

in practice it is often found to perform better, especially so when the individual

forecasts are highly correlated. In addition, the CLS weights are more easily in-

terpretable. It is hard to justify a non-convex linear combination of two forecasts,

while CLS weights can be swiftly interpreted for example as percentages devoted

to each of the individual forecasts.

(E) Variance-based, or Inverse Mean Squared Error (Inverse MSE). An approach suc-

cessfully applied in Stock and Watson (2004) for combining forecasts of output

growth. Put simply, more accurate forecasting methods (lower MSE) are weighted

more heavily. MSE here is computed based on out-of-sample forecasts, sometimes

referred to as Mean Squared Prediction Error. The combined forecast is given by

f c =

(
MSEi

∑P
i=1 MSEi

)−1

∑P
i=1

(
MSEi

∑P
i=1 MSEi

)−1 fi =
1

MSEi

∑P
i=1

1
MSEi

fi. (4)

(F) Best Individual model (BI). Essentially, selecting one model out of the available

pool based on some accuracy measure can be viewed as a specific case of forecast

combinations, with strong constraints. To see this, simply write the combined
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forecast as

f c = wi fi, where
wi = 1 if MSEi < MSE−i ∀i ∈ {1, . . . , P}
wi = 0 otherwise

(5)

As mentioned at the outset, this is a very strong form of regularization and so is somewhat

restrictive. However, it is easy to calculate and it is easy to explain. Apart from those

desirable properties, if the environment in which we are in is of a static nature, one

individual forecasting method may be identified as decidedly superior. In such a situation

restrictions as in equation (5) may be in order.

2.2. Complete subset regressions forecast combinations. The ForecastCombi-

nations package allows the relatively new idea of complete subset regressions forecast

combinations. In particular, for a fixed P we compute

Ψ =
P

∑
i=1

(
P
i

)
=

P

∑
p=1

P!
i!(P− i)!

(6)

regressions and obtain Ψ forecasts. We use the mean of those Ψ forecasts as the final com-

bined forecast. Referring to Elliott et al. (2013), the authors develop the theory behind

this estimator and present favourable results from simulations and empirical application

for US stock returns. Admittedly, the scheme is computationally expensive, and thus ad-

ditional computational resources may be required if P is in the dozens (Elliott et al. 2013,

section 2.5.1 propose a workaround based on random sampling from P). Additionally,

since all ψ = {1, . . . Ψ} forecasts are returned, the user can freely refine the technique

further. For example choosing to average not based on all Ψ forecasts but based on some

partial subset of Ψ. For example the most accurate g% forecasts say, treating g as a

hyper parameter. Using the median instead of the mean is another option that comes to

mind.

2.3. Information-theoretic forecast combinations. Armed with Ψ, the package Fore-

castCombinations supports the frequentists approach to forecast combinations, also

known as information-theoretic forecast combinations. Various information criteria are

available, including the recently advocated Mallow’s information criteria, or ’Mallows

model Averaging’ (MMA) as in the original paper of Hansen (2007).

Formally, the weight given to each forecast based on the information-theoretic forecast

combinations is the following:

wj =
exp(−1/2$j)

∑Ψ
j=1 exp(−1/2$j)

, (7)

where $j is the information criterion for forecast j obtained using a regression with a

specific combination of forecasts. The value of Ψ is fixed as the number of possible

combinations, and the combined forecast is given by:

f c =
Ψ

∑
j=1

wj f̃ j. (8)
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We denote f̃ here so as to distinguish it from f , the original forecast.

There are numerous information criteria to choose from, each with its own merits and

weaknesses. By far the most common are the AIC (Akaike’s information crietria) and the

BIC (Bayesian information criteria, also known as the Schwarz information criterion).

Both are supplied in addition to the corrected AIC (Hurvich and Tsai 1989) and the

Hannan Quinn information criteria (Hannan and Quinn 1979).

The Mallows information criteria is most directly given by

Mψ =
RSS + 2p(ψ)σ̂2

p(ψ)

N
, (9)

where RSS is the residual sum of squared errors based on some ’target’ model, a model

which is considered as an alternative. In our context it is the residual sum of squares based

on linear regression which includes all forecasts. The effective number of parameters in

a specific combo is given by p(ψ), and σ̂2 is an estimate of the error variance in that

combo, finally N is the number of observations. The combined forecast is given by

f c =
Ψ

∑
j=1

wj f̃ j =
Ψ

∑
j=1

M−1
j

∑Ψ
j=1 M−1

j

f̃ j (10)

One advantage of this approach as well as of the complete subset regressions approach

is that the amount of shrinkage enforced on the each individual forecast is data driven.

The specification of shrinkage hyper-parameter, which is required in the corresponding

Bayesian framework (Raftery and Painter 2005, for example) is spared from the user in

this case.

3. Using the ForecastCombinations package

This section demonstrates the usage and usefulness of the ForecastCombinations

package. We use the Boston dataset available as part of MASS package. The data contains

information collected by the U.S Census Service concerning housing in the area of Boston

Mass. This dataset is frequently used as a testing ground for evaluating various new

algorithms. Short variable description is given in table 1.

3.1. Data preparation. We start by splitting the data into a training set and a test set.

The training set will be used to train the individual models. The test set is again split

into two parts, the first part out of the two is used to train the combination scheme, save

for the simple average which does not need any training as the weights are a function

of P only. The second portion of the test is reserved for the evaluation of the different

combination schemes. The goal is to forecast with accuracy the variable Median value of

owner-occupied home (column 14 in the data) based on all other explanatory variables.

Load the package (I assume you have it installed).

> library(ForecastCombinations)
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Variable Description

CRIM per capita crime rate by town

ZN proportion of residential land zoned for lots over 25,000 square feet

INDUS proportion of non-retail business acres per town

CHAS Charles River dummy variable (1 if tract bounds river; 0 otherwise)

NOX nitric oxides concentration (parts per 10 million)

RM average number of rooms per dwelling

AGE proportion of owner-occupied units built prior to 1940

DIS weighted distances to five Boston employment centres

RAD index of accessibility to radial highways

TAX full-value property-tax rate per $10,000

PTRATIO pupil-teacher ratio by town

BLACK 1000(Bk− 0.63)2 where Bk is the proportion of blacks by town

LSTAT % lower status of the population

MEDV Dependent variable: Median value of owner-occupied homes in $1000’s

Table 1. Description of the Boston dataset

> library(MASS)

> nam <- names(Boston)

> set.seed(111)

> ind1 <- sample(NROW(Boston), size = round(NROW(Boston)*(1/2)))

> dtrain <- Boston[ind1, ]

> dtest_total <- Boston[-c(ind1), ]

> ind2 <- sample(NROW(dtest_total), size = round(NROW(dtest_total) * (1/2)))

> dtest_part1 <- dtest_total[ind2, ]

> dtest_part2 <- dtest_total[-ind2, ]

> ttest <- NROW(dtest_total)

3.2. Creating forecasts. The point of departure is that the forecaster already has her

set of forecasts. Therefore, initially we create a set of forecasts to be combined later.

Keeping our focus, where additional inputs are needed in creating the individual forecasts

we dispense from any tweaking and/or model refinements and use the software default

values or some ad-hoc choices. We don’t elaborate here on the actual methods, the

interested reader can inquire further using the references provided. The forecasts are

based on the following forecasting methods:

(1) Linear model (OLS)

(2) Principal component regression (Mevik and Wehrens 2007)

(3) Boosting regression trees (Ridgeway 2007)

(4) Random forests (Liaw and Wiener 2002)

(5) Support vector machine (Hornik et al. 2006)
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(6) Neural Network (Venables and Ripley 2002)

A total of six forecasts.

> # -- Ordinary Least Squared ------------------

> lmtrain <- lm(medv~., data = dtrain)

> lm_p <- t(t(lmtrain$coef) %*% t(cbind(rep(1, ttest), dtest_total[, -14])))

> # -- Principal Component Regression------------------

> pctr <- prcomp(dtrain[, -14])

> # We use 3 principal components

> num_factors <- 3

> pcrtrain <- lm(dtrain[,"medv"] ~ pctr$x[, 1:num_factors])

> pc_score_test <- t(t(pctr$rot[, 1:num_factors]) %*% t(dtest_total[, -14]))

> pcr_p <- t(t(pcrtrain$coef) %*% t(cbind(rep(1, ttest), pc_score_test)))

> # -- Boosting Regression Trees ------------------

> library(dismo)

> model_gbm <- gbm.step(data=dtrain, gbm.x = names(dtrain)[-14], gbm.y = "medv",

+ family = "gaussian", plot.main = F, silent = T)

> boost_p <- predict(model_gbm, newdata=dtest_total[, -14], n.trees=500)

> # -- Support Vector Machine ------------------

> library(e1071)

> svm_mod <- svm(medv~., data = dtrain, scale = T)

> svm_p <- predict(svm_mod, dtest_total[, nam!="medv"])

> # -- Random Forests------------------

> library(randomForest)

> model_rf <- randomForest(medv~., data= dtrain)

> rf_p <- predict(model_rf, newdata= dtest_total[, -14], type= "response")

> # -- Neural Networks ------------------

> library("neuralnet")

> temp_f <- as.formula(paste("medv ~", paste(nam[!nam %in% "medv"],

+ collapse = " + ")))

> nn <- neuralnet(temp_f , data=scale(dtrain), linear.output=T)

> library(nnet)

> nn_p <- compute(nn, scale(dtest_total[,1:13]))

> # Scale back to the original values:

> nn_p <- nn_p$net.result*sd(dtrain$medv) + mean(dtrain$medv)

> # ----------- Now we name and combine the forecast into a matrix:

> indiv_forecasts <- cbind(lm_p, pcr_p, boost_p, svm_p, rf_p, nn_p)

> ind_nam <- c("lm_p", "pcr_p", "boost_p", "svm_p", "rf_p", "nn_p")

> colnames(indiv_forecasts) <- ind_nam
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3.3. Combining individual forecasts. We loop through all the options provided by

the function, and print the results to the screen. We compare those results with those

that can be reached by exclusively rely on a single model chosen beforehand. We will

see that there are indeed accuracy gains, in line with the argumentation presented and

previous literature.

> scheme= c("simple", "ols", "robust", "variance based", "cls", "best")

> combine_f <- list()

> for (i in scheme) {

+ combine_f[[i]] <- Forecast_comb(obs = dtest_total[ind2, "medv"],

+ fhat = indiv_forecasts[ind2, ],

+ fhat_new = indiv_forecasts[-ind2, ], Averaging_scheme = i)

+ tmp <- round(

+ sqrt(mean((combine_f[[i]]$pred - dtest_total[-ind2, 14])^2)),

+ 3)

+ cat(i, ":", tmp, "\n")

+ }

simple : 3.859

ols : 3.12

robust : 3.065

variance based : 3.373

cls : 3.225

best : 3.3

We start by comparing those numbers with an evaluation of the individual forecasts

themselves. What would be the results if we would simply choose the one forecasting

model beforehand.

> rmse <- function(x,y){

+ sqrt(mean((x - y)^2))

+ }

> print(apply(indiv_forecasts[-ind2,], 2, rmse, y = dtest_total[-ind2, 14]),

+ digits= 3 )

lm_p pcr_p boost_p svm_p rf_p nn_p

4.08 9.55 4.00 3.95 3.30 3.52

As is,3 random forests is the best performing individual model, with the lowest Root

Mean Squared Error (RMSE). Out of the available combination schemes, only the variance-

based and the simple average are worse than the best performing individual model. OLS

combination or LAD combination are the best performers.

3Results may differ due to the randomness of data split between training and testing sets. Based on

numerous runs, qualitatively, results stand firmly.
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Figure 1. Weights of individual forecasts in the overall combined forecast

null device

1

To shed some more light, Figure (1) plots the resulting weights from each of the com-

bination schemes. For the sake of completeness, the simple average and the constants in

those regression-based schemes are plotted as well.

Several insights emerge. Ostensibly, given the good performance of the random forests

model, it receives the highest weight in the overall combined forecast in all but the simple

combination schemes. We also see that the constant in the regression-based forecast

combinations is quite negative, suggesting a possible bias of all or few of the individual

forecasts. Finally, we see that the CLS improves over the best individual model by

allowing for a slight positive weight in the second best individual forecast, the SVM.

This is typical, and serves here as an important illustration of the counter intuitive

nature of forecast combinations. We enjoy increased accuracy by allowing forecasts which
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are not best performing in comparison, to enter computation and exert their pull over

the final combined forecast. The strength in which those less accurate forecasts (again,

in comparison) are given is strictly an empirical question, which is at least partially the

reason for the colossal literature formed over the years.

As described above, another way to create a combined forecast is using a complete

subset regressions. The following code demonstrates the use of the Forecast_comb_all

function. Using the 6 forecasts constructed in the previous subsection,

> combine_f_all <- Forecast_comb_all(obs = dtest_total[ind2, "medv"],

+ fhat = indiv_forecasts[ind2, ], fhat_new = indiv_forecasts[-ind2, ])

|

| | 0%

|

|========== | 20%

|

|==================== | 40%

|

|============================== | 60%

|

|======================================== | 80%

|

|==================================================| 100%

> # To get the combined forecasts from the all subset regression:

> Combined_f_all_simple <- apply(combine_f_all$pred, 1, mean)

> print(sqrt(mean((Combined_f_all_simple - dtest_total[-ind2, 14])^2)),

+ digits= 3 )

[1] 2.99

Finally, we can use the information-theoretic, combining all possible combos based on

say the AIC criteria as in equation (7):

> # To get the combined forecasts based on aic criteria for example:

> Combined_f_all_aic <- t( combine_f_all$aic %*% t(combine_f_all$pred) )

> print(sqrt(mean((Combined_f_all_aic - dtest_total[-ind2, 14])^2)),

+ digits= 3)

[1] 3.1

4. Discussion and Conclusions

Some of the functions presented in this paper, despite being geared towards forecast

combinations, can be used in other ways as

> CLS_reg <- Forecast_comb(obs = dtest_total[, 14],

+ fhat = as.matrix(dtest_total[, -14]), Averaging_scheme = "cls")
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> coef_cls <- round(CLS_reg$weights, digits = 2)

> names(coef_cls) <- colnames(dtest_total[, -14])

> print(coef_cls[coef_cls!=0], digits = 3)

zn rm black

0.09 0.87 0.04

In the same fashion, the function Forecast_comb_all can be used to create a complete

subset regressions object using all the original explanatory variables (the first 13 columns

data).

> Complete_subset_reg <- Forecast_comb_all(obs = dtest_total[ind2, 14],

+ fhat = as.matrix(dtest_total[ind2, -14]),

+ fhat_new = dtest_total[-ind2, -14])

The object Complete_subset_reg$pred now contains forecasts from all possible com-

bination of the original explanatory variables.

That said, the ecosystem of R is by now very rich, and so there are other packages that,

although not forecasting oriented, are better designed to find the best subset of original

explanatory variables, with more sophisticated methods such as forward or backward

model selection (Lumley et al. 2015).

The best way to combine different forecasts has no theoretical underpinnings, a lot

depends on the specifics of the data at hand. And so, we implemented some of the most

popular ways in which forecasts can be combined, along with a demonstration of available

functionalities in the ForecastCombinations package.
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