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Abstract

While there is an extensive literature concerning forecasting with many predictors, there

are but few attempts to allow for non-linearity in such a `data-rich environment'. Using

macroeconomic data, we show that substantial gains in forecast accuracy can be achieved

by including both squares and �rst level interactions of the original variables in a pre-

dictive regression model. In case the number of original variables is reasonably large

this requires speci�c econometric considerations though, as the number of parameters to

be estimated may greatly exceed the number of available observations. We propose a

two-stage �screen and clean� procedure that enables estimation and forecasting in this

`ultrahigh-dimensional' setting. In the �rst stage, we perform univariate regressions to

screen for truly interesting e�ects, controlling the False Discovery Rate. In the second

step, we perform a standard bridge regression.
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1 Introduction

Over the past decade, we have witnessed an ongoing steady increase in computing power, data

collection and data storage facilities. As a result, a great number of potential explanatory

variables can nowadays be utilized in economic modeling and forecasting. Practitioners and

policy makers need no longer form their decisions according to measurements of only a few

key variables, but they may consider a broad set of indicators. In this context, the familiar

trade-o� between model complexity and forecast accuracy1 becomes of crucial importance.

In order to obtain accurate parameter estimates, we ideally should have many observations

for each parameter in the model, i.e. the ratio N/T should be close to zero, where N denotes

the number of parameters (which in the context of a linear regression model corresponds with

the number of explanatory variables) and T denotes the number of observations available for

estimation. When we have only a few observations per parameter, i.e. when the ratio N/T

is not close to zero (but not very large yet) things are more complicated, but several tools

for modeling and forecasting in this case have been developed in recent years, see Stock and

Watson (2006) for a survey.

Much less is known when facing a situation where the ratio N/T is large, say, over ten

or even over a hundred. A motivating example from economic forecasting is the need to

generate forecasts based on an extremely short estimation period (such that T is small)

due to a perceived structural break in the data generating process. Another relevant case,

which we consider in our empirical application, occurs when we wish to allow for non-linear

relations between the dependent variable (or target variable) and the explanatory variables

(or predictor variables). For clarity, assume that we are already in a data-rich (or �high-

dimensional�) environment with the ratio N/T ≈ 1. A natural �rst step to allow for non-

linearity is to augment the original explanatory variables with their squares. This doubles

the number of parameters in the model, resulting in a ratio 2N/T ≈ 2. This situation is

still econometrically manageable. However, when we also consider interaction terms between

di�erent variables the ratio in�ates to (N+N(N+1)/2)/T ≈ (N+3)/2. In this paper we use

the term �ultrahigh-dimensional� to describe such a situation.2 Progress in this area is found

1More complex models typically involve more unknown parameters. The resulting estimation uncertainty
may worsen the model's forecast performance.

2In the statistics literature this is sometimes referred to as high-dimensional, but we di�erentiate it from
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primarily in the statistics literature, mainly directed towards applications such as genomics,

tumour classi�cations, signal processing and image analysis. For example, to classify a tumour,

thousands of genes are monitored, each potentially helpful, while the number of patients is

far smaller.

The literature on statistical modeling in ultra-high-dimensional settings is growing rapidly,

steered to provide guidance both in terms of inference (see Meinshausen et al., 2009; Wasser-

man and Roeder, 2009) and prediction (see Fan et al., 2009; Fan and Lv, 2010). In this paper

we focus on the latter issue. In this branch of literature, without exception, the dimension-

ality issue is handled by splitting the forecasting problem into two steps. First, a screening

procedure is applied where the number of variables included in the predictive regression model

is substantially reduced. The goal of screening is to go back to a manageable situation with

a reasonable value for the ratio N/T , such that existing tools and methods can be used to

construct a forecast in the second step. In this paper we follow the methodology introduced

by Fan et al. (2009) and Fan and Lv (2010), where the initial screening is done by means

of componentwise regression.3 The predictive regression model in the second step then uses

only those variables which have highest marginal utility, i.e. the highest marginal correlation

with the target variable. A cuto� point de�nes how large the subset of chosen variables is. It

is typical to regard a variable as being relevant if the t-statistic associated with its coe�cient

in the componentwise regression is larger in absolute value than a �xed threshold t(α) cor-

responding with a pre-determined signi�cance level α, as in Bai and Ng (2008), for example.

This procedure is commonly known as �hard-thresholding�. In empirical applications, α is

typically set at a conventional value such as 0.05 or 0.10. This is likely not adequate in an

ultrahigh-dimensional environment, however, as it may not render a su�cient reduction in

the number of explanatory variables that `survive' the screening procedure.

The �rst contribution of this paper is to suggest an important modi�cation of this screening

step in order to make it useful for ultrahigh-dimensional settings. Our proposal is derived from

the well-developed literature of multiple testing. Note that the hard-thresholding procedure

as described above can be interpreted in this way, in the sense that a large number of t-tests is

the term �high-dimensional� in economics which describes the more manageable case where N ≈ T .
3If, for example, we have N explanatory variables {xi}Ni=1 and a single target variable y, applying compo-

nentwise regression means running N individual regressions of the form yt = α0i +α1ixit + εit, i = 1, . . . N .
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performed in the componentwise regressions. Due to the multiplicity problem, the probability

of a type I error obviously increases, and the set of variables passing the screening step likely

contains a substantial number of `false positives'. A natural way to deal with this issue is to

control the family wise error rate (FWER). We can commit ourselves to keep the type I error

under 100α% in the spirit of Bonferroni by using the threshold t(α/K), where K denotes

the number of tests, instead of the threshold t(α). The main drawback of this procedure

is its low power, in the sense that it generally fails to detect a substantial number of truly

relevant explanatory variables.4 In our context of forecasting, we can a�ord to be less strict

as the consequences of a type I error are less harmful than, say, falsely approving a drug. Our

proposal therefore is to deal with the multiplicity problem by controlling the false discovery

rate (FDR). This idea dates back to the seminal paper of Benjamini and Hochberg (1995).

The FDR is the expected proportion of rejections that are actually true in population, where

in our context a `rejection' means that a variable passes the initial screening procedure and

thus is considered to be helpful for forecasting. The procedure to control the FDR is less strict

than the Bonferroni procedure by applying a dynamic threshold to judge the signi�cance of

individual t-statistics. Speci�cally, the threshold changes monotonically from t(α/K) for the

largest t-statistic to t(α) for the smallest. As a result the FDR procedure is more powerful

and will generally discover more variables that are truly important than the Bonferroni-based

FWER procedure. The increased power of the FDR procedure is due to the fact that it

controls the number of false discoveries as a proportion of all discoveries, not as a proportion

of all tests. So in the case of many true discoveries, there is a wider margin for allowing false

discoveries. The cost of this increase in power is by design including more variables that are

unimportant compared to the more conservative FWER approach.

A second contribution of this paper lies in our empirical application, where we allow for

non-linear relations between a high-dimensional set of explanatory variables and important

macroeconomic target variables. Speci�cally, we aim to predict four key measures of the US

real economy, namely industrial production, employment, income and sales, using a set of 126

macroeconomic and �nancial variables. We extend this set of predictors with their squares

and �rst order interactions. We deal with the resulting ultrahigh-dimensional environment

4Holm (1979) o�ers a re�nement of this procedure that is somewhat more powerful.
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by �rst screening for important variables, controlling the FDR. In this way we end up with

a manageable, albeit still large number of relevant variables. We then use ridge regression in

the second step to estimate the coe�cients in the predictive regression model and obtain the

out-of-sample forecasts. We �nd that allowing for non-linearity in this way can be bene�cial

in terms of forecast accuracy. We note that we are not the �rst to consider the possibility

of nonlinearities in the context of macroeconomic forecasting in a data-rich environment.

Earlier attempts include Bai and Ng (2008) including squares of the explanatory variables and

by introducing squared factors within a principal component (factor modelling) framework;

Giovannetti (2013) using principal component analysis combined with spline regressions; and

Exterkate et al. (2013) using kernel ridge regression. All three studies �nd that accounting

for non-linearities can lead to a non-trivial improvement in forecast accuracy. Our empirical

�ndings reinforce and further strengthen these results.

E�ciently extracting relevant information from a large number of explanatory variables,

while at the same time upholding good forecast performance, is the focus of two main strands

of literature. The �rst strand, referred to as �Di�usion Index� or �Principal Component Re-

gression� modeling, considers summarizing the information from a large panel of predictor

variables using a small number of factors, typically taken to be the �rst few principal compo-

nents. Under the weak assumption that these factors are a good summary of the information

available in the large panel, the factors may be used for prediction instead of the many indi-

vidual original variables. Prominent contributions in this area are Stock and Watson (1999,

2002a,b, 2006), who drew considerable attention to the success of such methods taking a

forecasting perspective, more recently exempli�ed in Stock and Watson (2012). A generalized

version using spectral analysis for factor estimation is developed in Forni and Lippi (2001)

and Forni et al. (2005). For inference in these class of models see Bai (2003) and Bai and Ng

(2006). A survey of the extensive use of these models is found in the meta-analysis undertaken

by Eickmeier and Ziegler (2008).

The second strand of literature o�ers an alternative in the form of shrinkage. In this

approach, all individual variables are included in the (predictive) regression model. Obviously,

in a data-rich environment this breeds vast estimation noise and leads to over�tting. These

e�ects may be countered by shrinking the parameter estimates towards some target, which
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typically is taken to be zero. In most approaches, shrinkage is achieved by penalizing the

magnitude of the coe�cients. For example, Ridge Regression (Hoerl and Kennard, 1970)

minimizes the residual sum of squares plus a penalty in terms of the L2-norm of the coe�cients,

while the Least Absolute Sum of Squares Operator (LASSO) uses a penalty in terms of

the L1-norm, see Tibshirani (1996) and Hesterberg et al. (2008) for reviews. Both Ridge

Regression and LASSO are special cases of the so-called Bridge Regression (Fu, 1998). In a

linear regression setting, both also have a Bayesian �avor and can be cast into a Bayesian

framework with a speci�c choice of prior distribution. Over the years, next to the accumulating

evidence favoring shrinkage in terms of gains in forecast accuracy, many variants have been

suggested. The Elastic Net (Zou and Hastie, 2005), Adaptive LASSO (Zou, 2006) and the

Random LASSO (Wang et al., 2011) are really just a few examples. An interesting horserace

between many of the methods mentioned above is conducted by Kim and Swanson (2014), who

apply a large collection of models to a large-scale dataset of macroeconomic variables. They

empirically demonstrate that a combination of the two approaches, shrinkage and dimension

reduction, is highly e�ective for forecasting purposes. In our application, after the initial

screening step we opt for Ridge Regression in the second step to obtain the forecast. We �nd

non-trivial forecasting gains from extending the linear relation further, using squares and �rst

order interactions of the original variables.

The rest of this paper is organized as follows. Section 2 outlines the proposed two-step

procedure with the aim of forecasting in ultrahigh-dimensional situations. The focus is on

our suggestion for the initial screening procedure based on controlling the FDR. Section 3

introduces the empirical application by discussing the data set and several implementation

issues. Section 4 describes the empirical results. Section 5 concludes.

2 Forecasting in an ultrahigh-dimensional environment

We follow the convention in the literature on modeling and forecasting in an ultrahigh-

dimensional environment and split the problem into two parts. The �rst part consists of

an initial screening procedure, which aims to reduce the set of explanatory variables to a

manageable size. The second part then uses the selected subset of explanatory variables to
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estimate a predictive regression model for the target variable and to construct a forecast. We

frame the discussion in this section in terms of the subsequent empirical application, where

the ultrahigh-dimensional environment arises because of the desire to allow for non-linearities

in the relations between the explanatory variables and the target. The same principles apply

to di�erent settings, including the situation where the number of available predictor variables

is ultrahigh to start with.

2.1 Step 1: Screening based on controlling the FDR

Our aim is to construct an e�ective forecasting procedure that allows for non-linearities be-

tween the explanatory variables and the target series, in an ultrahigh-dimensional setting. For

this purpose we augment the original predictor variables with their squares and �rst-order

interactions. The resulting variables are collected in the T ×N matrix X, where N denotes

the total number of variables (i.e. the sum of the number of original variables, their squares

and �rst-order interactions) and T denotes the number of available observations. All vari-

ables in X are standardized to have mean zero and variance one. In the following we use

`explanatory variable', `variable' or `predictor' to describe a column in X, be it an original

variable, its square, or an interaction term between two original variables. In case the num-

ber of original variables is already fairly large (relative to the time dimension T ), including

their squares and interactions will lead to the situation that N � T . Hence, conventional

predictive regression models cannot be applied. Furthermore, even while in theory techniques

such as principal component regression (PCR) or ridge regression may be able to handle this

situation, in practice they are likely to su�er from problems if they are applied directly, using

the full matrix X. Speci�cally, it is reasonable to assume that most variables in X are not

related to the target, especially since an interaction term may be deemed important only if it

provides information in addition to the original variables. A technique such as PCR is known

to be negatively a�ected by the inclusion of (many) irrelevant variables, see Boivin and Ng

(2006) and Bai and Ng (2008), among others. For this reason it is useful to reduce the set of

variables before applying such techniques.

Let yt+h denote the target variable at time t + h, where h is the forecast horizon. In

order to select a subset of the available predictor variables, we conduct a univariate predictive

6



regression for each variable xit, i = 1, . . . , N :

yt+h = β0i + β1ixit + β2ixkt1{xit=xktxlt}+ β3ixlt1{xit=xktxlt}+ εi,t+h, t = 1, . . . , T − h,

(1)

where k, l = 1, . . . , N and k 6= l, and 1{C} is the indicator function which takes the value 1

if the condition C is true and 0 otherwise. In (1), the condition C is whether the variable xi

under consideration is an interaction term between (original) variables xk and xl. If so, these

original variables are also included in the regression, implicating that selection of interaction

term means that it has predictive ability in addition to the original variables.5 The relevance

of variable i is judged by the t-statistic associated with the least squares estimate of the

coe�cient β1i in (1). Typically, we select those variables for which the corresponding (two-

sided) p-values are below a predetermined signi�cance level α. This componentwise design,

maybe due to its simplicity and ease of implementation, is increasing in popularity, with

support from the forecast combination literature (Elliott et al., 2013; Samuels and Sekkel,

2013; Rossi and Sekhposyan, 2014) and, as in this case, alternative screening procedures

(Bair et al., 2006; Bai and Ng, 2008; Fan et al., 2009; Fan and Lv, 2010).

The screening procedure based on the componentwise regression in (1) can be viewed as

a multiple hypothesis testing problem, since it involves judging the signi�cance of N di�erent

test statistics. In the ultrahigh-dimensional setting where N is extremely large, using a �xed

signi�cance level α implies that many variables are likely to be mistaken as relevant only

because of the large number of tests conducted (unless α is set to an extremely low value,

of course, but this may reduce the discriminating power of the procedure to identify relevant

predictors, as discussed in the introduction). We propose a re�nement of this procedure to

account for this feature. In order to do so we invoke the FDR of Benjamini and Hochberg

(1995). Controlling the FDR means controlling the (unknown) quantity:

E

(
V

V + S

)
, (2)

5In case xi is the square of an original variable we do not include the original variable in (1). This is
motivated by the fact that the original variables are assumed to be standardized to have mean zero (and unit
variance), so that the correlation between the variable and its square will be (close to) zero by construction.
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where V is the number of false rejections and S is the number of correct rejections. Hence,

instead of controlling the proportion of false rejections relative to the total number of tests

(as in the traditional procedure described above), we aim to control the proportion of false

rejections relative to the total number of rejections. The motivation for controlling this

quantity is twofold. First, while making a type I error twice when we select four variables is

`unacceptable', it is much less problematic when we select a few hundred variables. Controlling

the FDR allows just that, with more false rejections being allowed as long as we also discover

more truly important variables. This is in sharp contrast with the FWER procedure, which is

ignorant to the number of true discoveries. Second, although undesirable since we unnecessary

in�ate estimation noise, the implications of false positives in our forecasting context are far

less severe than, say, in case of approving an ine�ective drug for production. In that sense we

can be less strict and in return, gain a higher number of true discoveries.

Controlling the FDR is achieved with the following procedure. We order the p-values

pi, i = 1, . . . , N , associated with the least squares estimate of the coe�cient β1i in (1) in

increasing order and denote them by p(i), such that

p(1) < p(2) < · · · < p(N). (3)

We then select the variables associated with the m smallest p-values, where

m = max{j : p(j) ≤
j

N
α, j = 1, . . . , N}, for given 0 < α < 1. (4)

In words, m is such that all ordered p-values up to and including the m-th one are smaller

than the increasing sequence j
Nα, but the (m + 1)-st one is not. Note that the number of

variables in the resulting subset is determined by the strength of the marginal correlation and

by the number of variables we test.

Naturally, when variables xk and xl are correlated, the t-statistics for β1k and for β1l in

(1) are correlated. While the FDR procedure as described above is designed for independent

tests, Benjamini and Yekutieli (2001) suggest a correction for correlated tests. The correction

is general in the sense that it does not depend on the speci�c form of the correlation structure
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between the di�erent tests. Instead of using (4), we set m as

m = max{j : p(j) ≤
j

N(12 + log(N))
α, j = 1, . . . , N}. (5)

This procedure provides us with a subset of variables that are considered to be most

important for prediction. We do not pursue a theoretical justi�cation so admittedly, we may

be left with a subset that does not contain all truly relevant variables. We leave further

theoretical developments for future research and at the moment, merely use this screening

procedure as a quantitative selection device.

2.2 Step 2: Forecasting based on ridge regression

We collect the variables selected by means of the FDR-based screening procedure and denote

the new reduced matrix of explanatory variables as X̃. These are used in the predictive

regression model

yt+h = x̃tβ + εt+h, t = 1, . . . , T − h, (6)

where x̃t denotes the t-th row in X̃. Given the ultrahigh dimension of the initial problem, we

are likely to be left with a large number of explanatory variables in x̃t still, compared with

the number of observations available for estimation. This is a situation particularly prone to

the danger of over�tting. In order to mitigate this e�ect, and given the fact that the variable

selection in the �rst step has been done according to marginal importance, we use ridge

regression to estimate the coe�cients β in the predictive regression model (6). Shrinkage, by

means of ridge regression or related techniques, has long been proven to be a powerful tool to

prevent over�tting. This also �ts the focus of this paper which is more on improving out-of-

sample performance by allowing for non-linearities, and less on the inference side. When one

is more interested in inference, instead of using ridge regression, shrinkage can be applied via

the LASSO or Adaptive LASSO. These methods have the advantage of shrinking coe�cients

exactly to zero and thus e�ectively achieving a further reduction in the subset of predictor

variables that are considered relevant.6

6In the more common case where T > Ñ , it is observed that prediction performance of ridge regression is
better than that of the LASSO, when cross-correlation in the explanatory matrix is high (Tibshirani, 1996),
but in general there is no evidence for universal dominance of one method over the other, see Fu (1998).
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Formally, we minimize the residual sum of squares plus a penalty in term of the L2-norm

of the coe�cients:

RSS(λ) = (y − X̃β)′(y − X̃β) + λβ′β, (7)

where y is the vector of observations on the target variable and the shrinkage coe�cient λ > 0.

The solution to this minimization problem is given by:

β̂RR = (X̃ ′X̃ + λI)−1X̃ ′y. (8)

The h-step ahead point forecast for yT+h is then obtained as

ŷT+h|T = x̃T β̂
RR.

3 Data, implementation and benchmark forecasts

In this section we introduce the application that we use to assess the empirical usefulness of

our proposed forecasting procedure in an ultrahigh-dimensional environment. We describe

the data, several relevant implementation issues, and competing methods that are used as

benchmarks for comparison.

3.1 Data

Our data set comprises a large number of US macroeconomic and �nancial variables at the

monthly frequency for the period April 1959 - September 2009. Following Stock and Watson

(2002b), Bai and Ng (2008) and related studies, we consider a total of 126 variables includ-

ing various measurements of production, consumption, income, sales, employment, monetary

aggregates, prices, interest rates, and exchange rates. All variables are transformed to sta-

tionarity by taking logarithms and/or �rst di�erences as described in Stock and Watson

(2005). We use four key indicators of real economic activity as target variables to be pre-

dicted: Industrial production, personal income, manufacturing & trade sales and employment.

The target series are transformed to represent annualized h-month percentage growth rates:

yt+h,h = 1200
h ln

(
wt+h

wt

)
, where wt is the original series. We consider four short- and medium-
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term forecast horizons, namely h = 1, 3, 6 and 12 months ahead. To simplify the notation,

the one-month growth rate (h = 1) is denoted as yt+1.

3.2 Implementation

We use a moving window with a �xed length of 10 years to specify and estimate all forecasting

models. For our proposed two-step procedure as described in Section 2, this means that each

month both the FDR-based screening and the ridge regression are implemented using the

most recent T = 120 observations. Using a �xed length moving window is a simple and

popular way to counter, at least partially, the e�ects of possible structural breaks in the data

generating process (Pesaran et al., 2006).

In order to obtain a good insight with regards to the possible gains in forecast accuracy due

to allowing for non-linear relations between the predictors and the target series, we apply our

proposed procedure using three di�erent sets of predictor variables: (1) only the 126 original

variables, (2) the original variables together with their squares, and (3) the original variables

together with their squares and �rst-order interactions. In the remainder, these three cases

are labeled S (for `Small'), M (`Medium') and L (`Large'). In addition, following Stock and

Watson (2002b) we account for autocorrelation in the target variables by including p lags of

the one-month growth rate, yt−j , j = 0, 1, . . . , p − 1, in both the univariate regression in (1)

in the initial screening phase as well as in the �nal predictive regression model in (6). We �x

the lag length p at 4 throughout the analysis.

To determine an appropriate value for the ridge parameter λ in (7) we use a data-driven

strategy based on cross-validation (CV), see Arlot and Celisse (2010) for a recent survey.

The main advantage of using a CV-type procedure here is that we can tailor it to our needs,

focusing on prediction, unlike in-sample oriented methods based on information criteria, for

example. A full-blown (leave-one-out) CV procedure is prohibitively costly though, due to

the use of the 10-year moving window for speci�cation and estimation. In addition, CV is

problematic due to the time series nature of our data and the fact that we are also interested

in more than one period ahead forecasts. We modify the procedure in a way that honors the

temporal dependence structure in the data, while at the same time making it out-of-sample

oriented and computationally feasible (even though still costly). Using the pre-selected subset
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of the predictors (recall this subset is allowed to change from one period to the next), we

obtain h-month ahead forecasts from the ridge regression according to a �ne grid of di�erent

λ values. We use the subsequent 36 months as a validation period, and select the value of

λ that delivers the smallest root mean squared prediction error (RMSE) for the validation

period. The �rst forecast which enters the evaluation is that after the 13 years used for both

training (10 years) and validation (3 years). As a result, the evaluation period runs from May

1974 until September 2009. Also note that this procedure implies that the ridge parameter

may vary over time as well as across forecast horizons.

3.3 Benchmark forecasts

We consider three competing methods to deal with the (ultra)high-dimensional environment

as benchmarks for comparison. Following Bai and Ng (2008) and Stock and Watson (2012),

the �rst benchmark model we use is a univariate autoregressive (AR) model of the form

yt+h,h = α+ φ1yt + · · ·+ φpyt−p+1 + εt+h,h, (9)

where we again set p = 4. Note that the `predictors' in this case are lagged one-month growth

rates, irrespective of the forecast horizon h.

The second benchmark is the di�usion index (DI) model of Stock and Watson (2002a), also

called (dynamic) principal component regression (PCR). It is widely used in macroeconomic

forecasting and has been recently shown by (Stock andWatson, 2012) to be a tough benchmark

to beat. In this approach, forecasts are obtained from the predictive regression model

yt+h,h = α+ φ1yt + · · ·+ φpyt−p+1 + γ
′ft + εt+h,h, (10)

where ft is a vector of r factors presumed to properly span the variance in the set of predictors

X. Typically the �rst few principal components of the covariance matrix of X are used for

this purpose. In our empirical application we use two di�erent speci�cations for the set

of predictors X: The �rst consists of the original variables only (abbreviated here as PC),

the second also includes their squares (abbreviated here as SPC).7 The decision regarding

7We also considered a third possibility by including �rst-order interactions of the original variables (QPC).
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the number of principal components to include in (10) is made in a similar fashion to that

described above. We create 36 out-of-sample forecasts, using di�erent numbers of factors

ranging from 1 to 10. We pick the number of factors that delivers the lowest RMSE based on

those forecasts.8

4 Results

In this section we report the forecasting results obtained for the four real macroeconomic time

series for the four forecast horizons considered. The FDR-based procedure using the S, M

and L sets of predictors is contrasted against the three benchmark forecasts AR, PC and SPC.

We evaluate the out-of-sample performance using the Root Mean Squared Error (RMSE), by

far the most common evaluation metric in the literature (Gneiting, 2011).

Table 1 presents the RMSEs for each of the forecasts relative to the RMSE of a random-

walk or `no-change' forecast (i.e. yt,h is used as a forecast of yt+h,h. For each target series and

forecast horizon, the method that achieves the lowest RMSE is highlighted in bold.

The table suggests three main conclusions. First, using the FDR-based screening proce-

dure generally o�ers improvements in forecast accuracy compared to the benchmark methods.

The FDR-based forecasts achieve the lowest RMSE in 12 out of the 16 cases considered. While

forecasting gains are observed across all forecast horizons, it also appears that the improve-

ments are largest at longer horizons. For h = 6 and 12 months the FDR approach leads to

quite substantial improvements, with gains in RMSE up to 8% relative to the best benchmark.

This empirical �nding is in line with results reported in Bai and Ng (2008), among others,

where the added value of non-linearity also is found to be much more pronounced for longer

horizons than for shorter horizons. The benchmark forecasts, in particular PC, are most dif-

�cult to improve upon for employment. This is in agreement with Exterkate et al. (2013),

This approach resulted in dramatically worse forecasting performance, in line with the negative results obtained
by Bai and Ng (2008). Results are therefore not reported here, but available upon request. Apart from SPC,
another way to allow for non-linearity is to add the squared factors to equation (10), i.e.,

yt+h,h = α+ φ1yt + · · ·+ φpyt−p+1 + γ
′
1ft + γ

′
2f

2
t + εt+h,h.

Both Bai and Ng (2008) and Exterkate et al. (2013) �nd this speci�cation to be dominated by SPC and hence
we do not apply it here.

8We also experimented with choosing the number of factors using BIC, which is more common in this case.
Results in terms of forecast accuracy are qualitatively similar.
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where it is also documented that PC delivers relatively accurate forecasts for this series.

Second, in the context of the FDR-based procedure, allowing for non-linear relations

between the predictors and the target variable improves forecast accuracy. In some instances

(in particular for industrial production) allowing for interaction e�ects among di�erent original

variables o�ers material gains. This �nding emerges from comparing the relative RMSE values

for the FDR-based forecasts using the S, M , and L sets of predictors. We observe that

forecasts based on the set of original variables only (S) are (on average) dominated either

by those that only include the squares (M) or also the �rst-order-interactions (L). In fact,

in most cases both the M - and L-based forecasts achieve a lower RMSE than the S-based

forecasts. Comparing the results for theM - and L-based forecasts directly is more subtle. For

horizons 6 and 12 months horizons, we �nd that allowing for interactions improves forecast

accuracy for 3 out of the 4 series considered. Also here we �nd that especially at longer

forecast horizons allowing for more complex non-linear relations is bene�cial.

Third, allowing for non-linearity by including squared principal components, as in the

SPC approach, does not lead to forecast improvements. In fact, in the large majority of cases,

PC performs better than SPC, a result again in line with Bai and Ng (2008). A plausible

explanation for this �nding is the fact that in the SPC approach all variables load on the

factors, i.e. the factor loadings are not sparse. This may prompt inaccurate factor estimates,

which eventually harms forecast accuracy. Strong support for this argument can be found in

Bai and Ng (2008) where it is found that restricting the number of variables which enter the

factor construction achieves substantially better results.

[Table 1 about here.]

We next examine whether the bene�ts from allowing for non-linear relations between the

predictors and the target variable are stable over time. Table 1 presents results for the com-

plete evaluation period May 1974-September 2009, which covers more than 35 years. Hence,

a relevant question is whether the superior forecasting performance of the FDR-RR method

arises because of a `steady stream' of more accurate forecasts throughout the entire period,

or whether this is due to speci�c sub-periods. Figure 1 helps in answering this question, by

presenting 10-year rolling RMSEs of the di�erent FDR-based forecasts relative to the RMSE
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of PC-based forecasts, for the 12 months horizon. Several features are noteworthy. First,

and most importantly, we do observe variation in the (relative) performance of the FDR-RR

method over time. For all four target series, performance is relatively strong compared with

the PC method until the late 1990s, but around the turn of the millenium it worsens such that

the RMSE of the FDR-based forecasts actually exceeds that of the PC-based forecasts. Such

behavior of a well performing method over some period which looses it's edge over some other

periods is also encountered in the in�ation forecasting literature Stock and Watson (2009).

Second, Figure 1 generalizes the �nding in Table 1 that incorporating interactions improves

performance, which is observed almost uniformly across series and over time. Compared

to just including the original predictors (S), including their squares (M) delivers similar or

smaller RMSE quite consistently. Once interactions are introduced (L) performance is further

improved.

Taken together, Figure 1 induces further con�dence in our FDR-based forecast method,

with forecasting gains observed in some periods for all four series. That said, there are

periods in which adding interactions negatively impacts accuracy compared with just using

the original variables and their squares. In some short periods the L-based approach is even

worse than the PC method. Since it is hard to foresee in advance which speci�cation is best

for a given period, in order to stabilize performance one might consider averaging forecasts

from the three speci�cations, S, M and L together with other models or external forecasts.

[Figure 1 about here.]

5 Conclusion

In this paper, we propose a novel procedure for forecasting in an ultrahigh-dimensional envi-

ronment, where the number of predictor variables greatly exceeds the number of observations

available for estimating the predictive regression model. The procedure consists of two steps.

In the �rst step, the set of predictor variables is reduced by selecting those variables that

appear most informative (from a forecasting perspective) for the target series. The novelty

introduced in this step is that the selection is performed while controlling the false discovery

rate (FDR), instead of applying a �hard thresholding�-type approach that controls the family
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wise error rate (FWER). In the second step we use ridge regression to estimate the predictive

regression model. Shrinkage is applied here, as the number of predictor variables selected in

the �rst step may still be large and so may harm forecasting performance by way of over�tting.

Our proposed two-step procedure can also be viewed as diversi�ed shrinkage. Each group

of coe�cients in the predictive regression model has its own penalty parameter λ, with co-

e�cients of variables excluded in the �rst step having an extremely high value of λ (which

shrinks them to zero), while the λ of the remaining coe�cients is determined as usual using

CV. In that sense, our procedure �ts into the general framework recently given in Stock and

Watson (2012) with a speci�c shrinkage function.

We apply the proposed two-step procedure in an empirical forecasting exercise, where the

target series are four monthly measures of the US real economy. The ultrahigh-dimensional

environment arises here because of the desire to accommodate possible non-linear relations

between the (126) predictors and the target. This is achieved by allowing for squares and

cross-products of the original variables in the predictive regression model. We document that

substantial improvements in forecast accuracy can be achieved by (i) allowing for such non-

linearities, and (ii) by applying the FDR-based variable selection procedure. The improved

predictive ability is most substantial for longer forecast horizons.

Our empirical results encourage further research towards other possible ways to allow for

a non-linear relations between predictor variables and target series. The research into this

area is not yet abundant, but empirical evidence in this- and other papers suggest this can

be exploited using modern statistical methods. One such direction may be the exploration of

the fast growing literature which combines dimension reduction and sparsity. This includes

papers discussing sparse partial least squares (Boulesteix and Strimmer, 2007, and references

therein), and the promising method of sparse principal component analysis (Zou et al., 2006).
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Figure 1: Ten years rolling RMSE. The graph shows the ratio of the RMSE of the FDR−RR
method to the RMSE of the PC benchmark model, for the 12 months horizon. The horizontal
line at 1 represents equal RMSE between the PC method and the FDR−RR method.
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Personal Income Manufacturing & Trade Sales
h: 1 3 6 12 1 3 6 12

Benchmarks
AR(4) 0.687 0.715 0.837 0.839 0.666 0.824 0.837 0.820
PC 0.858 0.714 0.879 0.864 0.672 0.830 0.855 0.856
SPC 0.686 0.743 0.870 0.903 0.659 0.838 0.834 0.875

FDR-RR
S 0.673 0.706 0.833 0.841 0.659 0.798 0.819 0.816
M 0.672 0.701 0.826 0.834 0.656 0.792 0.811 0.810
L 0.687 0.727 0.844 0.843 0.658 0.809 0.785 0.757

Industrial Production Employment
h: 1 3 6 12 1 3 6 12

Benchmarks
AR(4) 0.842 0.937 0.884 0.797 0.918 1.113 0.945 0.795
PC 0.955 0.885 0.834 0.798 0.915 0.972 0.929 0.830
SPC 0.822 0.917 0.830 0.888 0.942 1.023 0.936 0.901

FDR-RR
S 0.833 0.915 0.867 0.795 1.119 1.337 1.113 0.919
M 0.818 0.898 0.853 0.790 1.058 1.276 1.075 0.906
L 0.783 0.857 0.813 0.774 0.904 1.079 0.960 0.886

Table 1: Results - out-of-sample accuracy
The table reports root mean squared prediction errors (RMSE) for forecasts of the h-month growth rate
over the period May 1974 to September 2009, relative to the RMSE of a no-change forecast. For each
series and each forecast horizon, the lowest RMSE achieved across all forecast methods is printed in
boldface. PC denotes the principal component regression based on 10. SPC denotes the case where the
principal components are allowed to load also on the squares of the original variables. FDR-RR indicates
the forecast method with initial screening based on controlling the FDR followed by a ridge regression for
the forecasting model. Three sets of predictors are considered in the screening phase: S - only the 126
original variables; M - the original variables together with their squares, and L - the original variables
together with their squares and �rst-order interactions.
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