Advances in post-model-selection inference

Along with improvements in computational power, variable selection has become one of the problems attracting the most effort. We (well.. experts) have made huge leaps in the realm of variable selection. Prediction being probably the most common objective. LASSO (Least Absolute Sum of Squares Operator) leading the way from the west (Stanford) with its many variations (Adaptive, Random, Relaxed, Fused, Grouped, Bayesian.. you name it), SCAD (Smoothly Clipped Absolute Deviation) catching up from the east (Princeton). With the good progress in that area, not secondary but has been given less attention -> Inference is now being worked out.