During 2017 I blogged about Statistical Shrinkage. At the end of that post I mentioned the important role signal-to-noise ratio (SNR) plays when it comes to the need for shrinkage. This post shares some recent related empirical results published in the Journal of Machine Learning Research from the paper Randomization as Regularization. While mainly for tree-based algorithms, the intuition undoubtedly extends to other numerical recipes also.
Category: Statistics and Econometrics
Trees 1 – 0 Neural Networks
Tree-based methods like decision trees and their powerful random forest extensions are one of the most widely used machine learning algorithms. They are easy to use and provide good forecasting performance off the cuff more or less. Another machine learning community darling is the deep learning method, particularly neural networks. These are ultra flexible algorithms with impressive forecasting performance even (and especially) in highly complex real-life environments.
This post is shares:
Beware of Spurious Factors
The word spurious refers to “outwardly similar or corresponding to something without having its genuine qualities.” Fake.
While the meanings of spurious correlation and spurious regression are common knowledge nowadays, much less is understood about spurious factors. This post draws your attention to recent, top-shelf, research flagging the risks around spurious factor analysis. While formal solutions are still pending there are couple of heuristics we can use to detect possible problems.
Understanding Convolutional Neural Networks
Convolutional Neural Networks (CNNs from here on) triumph in the field of image processing because they are designed to effectively handle strong spatial dependencies. Simply put, adjacent pixel-values are close to each other, often changing only gradually from one pixel to the next. In a picture where you wear a blue shirt, all the pixels in that area of the picture are blue. You can think of a strong autocorrelated time series, just for spatial data rather than sequential data. This post explains few important concepts related to CNNs: sparsity of connections, parameter sharing, and hierarchical feature engineering.
Correlation and Correlation Structure (6) – Distance Correlation
While linear correlation (aka Pearson correlation) is by far the most common type of dependence measure there are few arguably better ways to characterize\estimate the degree of dependence between variables. This is a fascinating topic I keep coming back to. There is so much for a typical geek to appreciate: non-linear dependencies, should we consider the noise in the data or rather just focus on the underlying process, should we consider the whole distribution or just few moments.
In this post number 6 on correlation and correlation structure I share another dependency measure called “distance correlation”. It has been around for a while now (2009, see references). I provide just the intuition, since the math has little to do with the way distance correlation is computed, but rather with the theoretical justification for its practical legitimacy.
Similarity and Dissimilarity Metrics – Kernel Distance
In the field of unsupervised machine learning, similarity and dissimilarity metrics (and matrices) are part and parcel. These are core components of clustering algorithms or natural language processing summarization techniques, just to name a couple.
While at first glance distance metrics look like child’s play, the fact of the matter is that when you get down to business there are a lot of decisions to make, and who likes that? to make matters worse:
- Theoretical guidance is nowhere to be found
- Your choices and decisions matter, in the sense that results materially change
After reading this post you will understand concepts like distance metrics, (dis)similarity metrics, and see why it’s fashionable to use kernels as similarity metrics.
Hyper-Parameter Optimization using Random Search
Hyper-parameters are parameters which are not estimated as an integral part of the model. We decide on those parameters but we don’t estimate them within, but rather beforehand. Therefore they are called hyper-parameters, as in “above” sense.
Almost all machine learning algorithms have some hyper-parameters. Data-driven choice of hyper-parameters means typically, that you re-estimate the model and check performance for different hyper-parameters’ configurations. This adds considerable computational burden. One popular approach to set hyper-parameters is based on a grid-search over possible values using the validation set. Faster and simpler ways to intelligently choose hyper-parameters’ values would go a long way in keeping the stretched computational cost at a level you can tolerate.
Enter the paper “Random Search for Hyper-Parameter Optimization” by James Bergstra and Yoshua Bengio, suggesting with a straight face not to use grid-search but instead, look for good values completely at random. This is very counterintuitive, for how can a random guesses within some region compete with systematically covering the same region? What’s the story there?
Below I share the message of that paper, along with what I personally believe is actually going on (and the two are very different).
What is the Kernel Trick?
Every so often I read about the kernel trick. Each time I read about it I need to relearn what it is. Now I am thinking “Eran, don’t you have this fancy blog of yours where you write about statistics you don’t want to forget?” and then: “why indeed I do have a fancy blog where I write about statistics I don’t want to forget”. So in this post I explain the “trick” in kernel trick and why it is useful.
Local Linear Forests
Random forests is one of the most powerful pure-prediction algorithms; immensely popular with modern statisticians. Despite the potent performance, improvements to the basic random forests algorithm are still possible. One such improvement is put forward in a recent paper called Local Linear Forests which I review in this post. To enjoy the read you need to be already familiar with the basic version of random forests.
Publication in Significance – code
Couple of months ago I published a paper in Significance – couple of pages describing the essence of deep learning algorithms, and why they are so popular. I got a few requests for the code which generated the figures in that paper. This weekend I reviewed my code and was content to see that I used a pseudorandom numbers, with a seed (as oppose to completely random numbers; without a seed). So now the figures are exactly reproducible. The actual code to produce the figures, and the figures themselves (e.g. for teaching purposes) are provided below.
A New Parameterization of Correlation Matrices
In volatility modelling, a typical challenge is to keep the covariance matrix estimate valid, meaning (1) symmetric and (2) positive semi definite*. A new paper published in Econometrica (citing from the paper) “introduces a novel parametrization of the correlation matrix. The reparametrization facilitates modeling of correlation and covariance matrices by an unrestricted vector, where positive definiteness is an innate property” (emphasis mine). Econometrica is known to publish ground-breaking research, and you may wonder: what is the big deal in being able to reparametrise the correlation matrix?
What’s the big idea? Deep learning algorithms
Deep learning algorithms are increasingly featuring in popular news outlets, large-scale media events and academic conferences. But what makes them so popular? Why now?
I recently published what I hope is an easy read for all of you modern-statistics geeks lovers; explaining the thrust behind this machine-learning class of models.
You can download the two-pager from Significance, specifically here (subscription required).
Bootstrap Standard Error Estimates – good news
More good news for the statistical bootstrap. A new paper in the prestigious Econometrica journal makes two interesting points.
Bayesian vs. Frequentist in Practice, part 3
This post is inspired by Leo Breiman’s opinion piece “No Bayesians in foxholes”. The saying “there are no atheists in foxholes” refers to the fact that if you are in the foxhole (being bombarded..), you pray! Leo’s paraphrase indicates that when complex, real problems are present, there are no Bayesian to be found.
Random forest importance measures are NOT important
Random Forests (RF from here onwards) is a widely used pure-prediction algorithm. This post assumes good familiarity with RF. If you are not familiar with this algorithm, stop here and see the first reference below for an easy tutorial. If you used RF before and you are familiar with it, then you probably encountered those “importance of the variables” plots. We start with a brief explanation of those plots, and the concept of importance scores calculation. Main takeaway from the post: don’t use those importance scores plots, because they are simply misleading. Those importance plots are simply a wrong turn taken by our human tendency to look for reason, whether it’s there or it’s not there.