R tips and tricks – shell.exec

When you startup your machine, the first thing you do is to open the various programs you work with. Examples: your note-taking program, the pdf file that you need to read, the ppt file you were last working on, and of course your strongest link with the outside world nowadays; your email box. This post shows how to automate this process. Windows machines notoriously need restarting for every little (un)install. I trust you will find this startup automation advice handy.

Continue reading

R tips and tricks – readClipboard

Here is a small utility function to save you some boring work.

Say you have a file to read into R. The file path is C:\Users\folder1\folder2\folder3\mydata.csv. So what do you do? you copy the path, paste it to the editor, and start reversing the backslash into a forward slash so that R can read your file.

With the help of the rstudioapi package, the readClipboard function and the following function:

You can
1. Simply copy the path C:\Users\folder1\folder2\folder3\mydata.csv
2. execute pathh <- get_path()
3. use pathh which is now R-ready.

No more reversing or escaping backslash.

R tips and tricks – Timing and profiling code

Modern statistical methods use simulations; generating different scenarios and repeating those thousands of times over. Therefore, even trivial operations burden computational speed.

In the words of my favorite statistician Bradley Efron:

“There is some sort of law working here, whereby statistical methodology always expands to strain the current limits of computation.”

In addition to the need for faster computation, the richness of open-source ecosystem means that you often encounter different functions doing the same thing, sometimes even under the same name. This post explains how to measure the computational efficacy of a function so you know which one to use, with a couple of actual examples for reducing computational time.

Continue reading

R Journal publication

The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R.

Christoph Weiss, Gernot Roetzer and myself have joined forces to write an R package and the accompanied paper: Forecast Combinations in R using the ForecastComb Package, which is now published in the R journal. Below you can find a few of my thoughts about the journey towards publication in the R journal, and a few words about working with a small team of three, from three different locations.

Continue reading

R tips and tricks – higher-order functions

A higher-order function is a function that takes one or more functions as arguments, and\or returns a function as its result. This can be super handy in programming when you want to tilt your code towards readability and still keep it concise.

Continue reading

R tips and tricks – the assign() function

The R language has some quirks compared to other languages. One thing which you need to constantly watch for when moving to- or from R, is that R starts its indexing at one, while almost all other languages start indexing at zero, which takes some getting used to. Another quirk is the explicit need for clarity when modifying a variable, compared with other languages.

Take python for example, but I think it looks the same in most common languages:

Continue reading

R tips and tricks – the pipe operator

The R language has improved over the years. Amidst numerous splendid augmentations, the magrittr package by Stefan Milton Bache allows us to write more readable code. It uses an ingenious piping convention which will be explained shortly. This post talks about when to use those pipes, and when to avoid using pipes in your code. I am all about that bass readability, but I am also about speed. Use the pipe operator, but watch the tradeoff.

Continue reading

R tips and tricks – Faster Loops

Insert or bind?

This is the first in a series of planned posts, sharing some R tips and tricks. I hope to cover topics which are not easily found elsewhere. This post has to do with loops in R. There are two ways to save values when looping:
1. You can predefine a vector and fill it, or
2. you can recursively bind the values.

Which one is faster?

Continue reading

Good coding practices – part 2

Introduction

In part 1 of Good coding practices we considered how best to code for someone else, may it be a colleague who is coming from Excel environment and is unfamiliar with scripting, a collaborator, a client or the future-you, the you few months from now. In this second part, I give some of my thoughts on how best to write functions, the do’s and dont’s.

Continue reading

Good coding practices – part 1

Introduction

At work, I recently spent a lot of time coding for someone else, and like anything else you do, there is much to learn from it. It also got me thinking about scripting, and how best to go about it. To me it seems that the new working generation mostly tries to escape from working with Excel, but “let’s not kid ourselves: the most widely used piece of software for statistics is Excel” (Brian D. Ripley). this quote is 15 years old almost, but Excel still has a strong hold on the industry.

Here I discuss few good coding practices. Coding for someone else is not to be taken literally here. ‘Someone else’ is not necessarily a colleague, it could just as easily be the “future you”, the you reading your code six months from now (if you are lucky to get responsive referees). Did it never happened to you that your past-self was unduly cruel to your future-self? that you went back to some old code snippets and dearly regretted not adding few comments here and there? Of course it did.

Unlike the usual metric on which “good” is usually measured by when it comes to coding: good = efficient, here the metric would be different: good = friendly. They call this literate programming. There is a fairly deep discussion about this paradigm by John D. cook (follow what he has to say if you are not yet doing it, there is something for everyone).

Continue reading