Moving average is one of the most commonly used smoothing method, basically the go-to. It helps us detect trend in the data by smoothing out short term fluctuations. The computation is trivial: take the most recent k points and simple-average them. Here is how it looks:

# Tag: Robust Statistics

## Adaptive Huber Regression

Many years ago, when I was still trying to beat the market, I used to pair-trade. In principle it is quite straightforward to estimate the correlation between two stocks. The estimator for beta is very important since it determines how much you should long the one and how much you should short the other, in order to remain market-neutral. In practice it is indeed very easy to estimate, but I remember I never felt genuinely comfortable with the results. Not only because of instability over time, but also because the Ordinary Least Squares (OLS from here on) estimator is theoretically justified based on few text-book assumptions, most of which are improper in practice. In addition, the OLS estimator it is very sensitive to outliers. There are other good alternatives. I have described couple of alternatives here and here. Here below is another alternative, provoked by a recent paper titled *Adaptive Huber Regression*.

## Trim your mean

The mean is arguably the most commonly used measure for central tendency, no no, don’t fall asleep! important point ahead.

We routinely compute the average as an estimate for the mean. All else constant, how much return should we expect the S&P 500 to deliver over some period? the average of past returns is a good answer. The average is the Maximum Likelihood (ML) estimate under Gaussianity. The average is a private case of least square minimization (a regression with no explanatory variables). It is a good answer. BUT:

## OLS beta VS. Robust beta

In financial context, $\beta$ is suppose to reflect the relation between a stock and the general market. A broad based index such as the S&P 500 is often taken as proxy for the general market. The $\beta$, without getting into too much detail, is estimated using the regression: **$$stock_i = \beta_0+\beta_1market_i+e_i$$ ** A $\widehat{\beta_1}$ of say, 1.5 means that when the market goes up 1% the specific stock goes up 1.5%. (Ignoring all the biases at the moment!)