Moving average is one of the most commonly used smoothing method, basically the go-to. It helps us detect trend in the data by smoothing out short term fluctuations. The computation is trivial: take the most recent k points and simple-average them. Here is how it looks:

# Category: Finance and Trading

## Portfolio Construction Tilting towards Higher Moments

When you build your portfolio you must decide what is your risk profile. A pension fund’s risk profile is different than that of a hedge fund, which is different than that of a family office. Everyone’s goal is to maximize returns given the risk. Sinfully but commonly risk is defined as the variability in the portfolio, and so we feed our expected returns and expected risk to some optimization procedure in order to find the optimal portfolio weights. Risk serves as a decision variable. You choose the risk, and (hope to) get the returns.

A new paper from Kris Boudt, Dries Cornilly, Frederiek Van Hollee and Joeri Willems titled Algorithmic Portfolio Tilting to Harvest Higher Moment Gains makes good progress in terms of our definition of risk, and risk-return trade-off. They propose a quantified way in which you can adjust your portfolio to account not only for the variance, but also for higher moments, namely skewness and kurtosis. They do that in two steps. The first is to simply set your portfolio based on whichever approach you follow (e.g. minvol, equal risk contribution or other). In the second step you tilt the portfolio such that the higher moments are brought into focus and get the attention they deserve. This is done by deviating from the original optimization target so that higher moments are utility-improved: less variance, better skew and lower kurtosis.

## Adaptive Huber Regression

Many years ago, when I was still trying to beat the market, I used to pair-trade. In principle it is quite straightforward to estimate the correlation between two stocks. The estimator for beta is very important since it determines how much you should long the one and how much you should short the other, in order to remain market-neutral. In practice it is indeed very easy to estimate, but I remember I never felt genuinely comfortable with the results. Not only because of instability over time, but also because the Ordinary Least Squares (OLS from here on) estimator is theoretically justified based on few text-book assumptions, most of which are improper in practice. In addition, the OLS estimator it is very sensitive to outliers. There are other good alternatives. I have described couple of alternatives here and here. Here below is another alternative, provoked by a recent paper titled *Adaptive Huber Regression*.

## Day of the week and the cross-section of returns

I just finished reading an interesting paper by Justin Birru titled: “Day of the week and the cross-section of returns” (reference below). The story is much too simple to be true, but it looks to be so. In fact, I would probably altogether skip it without the highly ranked *Journal of Financial Economics* stamp of approval. However, by the end of the paper I was as convinced as one can be without actually running the analysis.

## Create own Recession Indicator using Mixture Models

## Context

Broadly speaking, we can classify financial markets conditions into two categories: Bull and Bear. The first is a “todo bien” market, tranquil and generally upward sloping. The second describes a market with a downturn trend, usually more volatile. It is thought that those bull\bear terms originate from the way those animals supposedly attack. Bull thrusts its horns up while a bear swipe its paws down. At any given moment, we can only guess the state in which we are in, there is no way of telling really; simply because those two states don’t have a uniformly exact definitions. So basically we never actually observe a membership of an observation. In this post we are going to use (finite) mixture models to try and assign daily equity returns to their bull\bear subgroups. It is essentially an unsupervised clustering exercise. We will create our own recession indicator to help us quantify if the equity market is contracting or not. We use minimal inputs, nothing but equity return data. Starting with a short description of Finite Mixture Models and moving on to give a hands-on practical example.

## Price Movement Prediction – another paper

Just finished reading the paper Stock Market’s Price Movement Prediction With LSTM Neural Networks. The abstract attractively reads: “The results that were obtained are promising, getting up to an average of 55.9% of accuracy when predicting if the price of a particular stock is going to go up or not in the near future.”, I took the bait. You shouldn’t.

## Market intraday momentum

I recently spotted the following intriguing paper: Market intraday momentum.

From the abstract of that paper:

Based on high frequency S&P 500 exchange-traded fund (ETF) data from 1993–2013, we show an intraday momentum pattern: the first half-hour return on the market as measured from the previous day’s market close predicts the last half-hour return. This predictability, which is both statistically and economically significant is stronger on more volatile days, on higher volume days, on recession days, and on major macroeconomic news release days.

Nice! Looks like we can all become rich now. I mean, given how it’s written, it should be quite easy for any individual with a trading account and a mouse to leverage up and start accumulating. Maybe this is so, but let’s have an informal closer look, with as little effort as possible, and see if there is anything we can say about this idea.

## R in Finance highlights

The yearly *R in Finance* conference is one of my favorites:

## Curse of dimensionality part 3: Higher-Order Comoments

Higher moments such as Skewness and Kurtosis are not as explored as they should be.

These moments are crucial for managing portfolio risk. At least as important as volatility, if not more. Skewness relates to asymmetry risk and Kurtosis relates to tail risk.

Despite their great importance, those higher moments enjoy only a small portion of attention compared with their lower more friendly moments: the mean and the variance. In my opinion, one reason for this may be the impossibility of estimating those moments, estimating them accurately that is.

It is yet another situation where Curse of Dimensonality rears its enchanting head (and an idea for a post is born..).

## Portfolio Construction with R

## Preview

Constructing a portfolio means allocating your money between few chosen assets. The simplest thing you can do is evenly split your money between few chosen assets. Simple as it is, good research shows it is just fine, and even better than other more sophisticated methods (for example Optimal Versus Naive Diversification: How Inefficient is the 1/N). However, there is also good research that declares the opposite (for example Large Dynamic Covariance Matrices) so go figure.

Anyway, this post shows a few of the most common to build a portfolio. We will discuss portfolios which are optimized for:

- Equal Risk Contribution
- Global Minimum Variance
- Minimum Tail-Dependence
- Most Diversified
- Equal weights

We will optimize based on half the sample and see out-of-sample results in the second half. Simply speaking, how those portfolios have performed.

## Bitcoin exponential growth

Is bitcoin a bubble? I don’t know. What defines a bubble? The price should drastically overestimate the underlying fundamentals. I simply don’t know much about blockchain to have an opinion there. A related characteristic is a run-away price. Going up fast just because it is going up fast.

## Bitcoin investing

Bitcoin is a cryptocurrency created in 2008. I have never belonged with team “gets it” when it comes to Bitcoin investing, but perhaps time has come to reconsider.

## Visualizing Tail Risk

Tail risk conventionally refers to the risk of a large and sharp draw down of the portfolio. How large is subjective and depends on how you define what is a tail.

A lot of research is directed towards having a good estimate of the tail risk. Some fairly new research also now indicates that investors perceive tail risk to be a stand-alone risk to be compensated for, rather than bundled together with the usual variability of the portfolio. So this risk now gets even more attention.

## Machine Trading – book review

In trading and in trading-related research one could be quickly overwhelmed with the sea of ink devoted to trading strategies and the like. It is essential that you “pick your battles” so to speak. I recently finished reading Machine Trading, by Ernest Chan. Here is what I think about the book.

## Density Confidence Interval

Density estimation belongs with the literature of non-parametric statistics. Using simple bootstrapping techniques we can obtain confidence intervals (CI) for the whole density curve. Here is a quick and easy way to obtain CI’s for different risk measures (VaR, expected shortfall) and using what follows, you can answer all kind of relevant questions.