This post is inspired by Leo Breiman’s opinion piece “No Bayesians in foxholes”. The saying “there are no atheists in foxholes” refers to the fact that if you are in the foxhole (being bombarded..), you pray! Leo’s paraphrase indicates that when complex, real problems are present, there are no Bayesian to be found.

# Tag: shrinkage

## Why complex models are data-hungry?

If you regularly read this blog then you know I am not one to jump on the “AI Bandwagon”, being quickly weary of anyone flashing the “It’s Artificial Intelligence” joker card. Don’t get me wrong, I understand it is a sexy term I, but to me it always feels a bit like a sales pitch.

If the machine does anything (artificially) intelligent it means that the model at the back is complex, and complex models need massive (**massive** I say) amounts of data. This is because of the infamous Curse of dimensionality.

I know it. You know it. Complex models need a lot of data. You have read this fact, even wrote it at some point. But why is it the case? “So we get a good estimate of the parameter, and a good forecast thereafter”, you reply. I accept. But.. what is it about simple models that they could suffice themselves with much less data compared to complex models? Why do I always recommend to start simple? and why the literature around shrinkage and overfitting is as prolific as it is?

## LASSO, LASSO, LASSO

LASSO stands for Least Absolute Shrinkage and Selection Operator. It was first introduced 21 years ago by Robert Tibshirani (Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B). In 2004 the four statistical masters: Efron, Hastie, Johnstone and Tibshirani joined together to write the paper *Least angle regression* published in the Annals of statistics. It is that paper that sent the LASSO to the podium. The reason? they removed a *computational* barrier. Armed with a new ingenious geometric interpretation, they presented an algorithm for solving the LASSO problem. The algorithm is as simple as solving an OLS problem, and with computer code to accompany their paper, the LASSO was set for its liftoff*.

The LASSO overall reduces model complexity. It does this by completely excluding some variables, using only a subset of the original potential explanatory variables. Since this can add to the story of the model, the reduction in complexity is a desired property. Clarity of authors’ exposition and well rehashed computer code are further reasons for the fully justified, full fledged LASSO flareup.

This is not a LASSO tutorial. Google-search results, undoubtedly refined over years of increased popularity, are clear enough by now. Also, if you are still reading this I imagine you already know what is the LASSO and how it works. To continue from this point, what follows is a selective list of milestones from the academic literature- some theoretical and practical extensions.

## Statistical Shrinkage

Shrinkage in statistics has increased in popularity over the decades. Now statistical shrinkage is commonplace, explicitly or implicitly.

But when is it that we need to make use of shrinkage? At least partly it depends on signal-to-noise ratio.

## A shrinkage estimator for beta

In the post pairs trading issues one of the problems raised was the unstable estimates of the stock’s beta with respect to the market. Here is a suggestion for a possible solution, which is not really a solution but more stuff to do to make you feel less stupid when trading based on your fragile estimates.