Principal component analysis (PCA from here on) is performed via linear algebra functions called eigen decomposition or singular value decomposition. Since you are actually reading this, you may well have used PCA in the past, at school or where you work. There is a strong link between PCA and the usual least squares regression (previous posts here and here). More recently I explained what does variance explained by the first principal component actually means.

This post offers a matrix approximation perspective. As a by-product, we also show how to compare two matrices, to see how different they are from each other. Matrix approximation is a bit math-hairy, but we keep it simple here I promise. For this fascinating field itself I suspect a rise in importance. We are constantly stretching what we can do computationally, and by using approximations rather than the actual data, we can ease that burden. The price for using approximation is decrease in accuracy (à la “garbage in garbage out”), but with good approximation the tradeoff between the accuracy and computational time is favorable.