I have noticed that when I use the term “coordinates” to talk about vectors, it doesn’t always click for everyone in the room. The previous post covered the algebra of word embeddings and now we explain why you should think about the vector of the word embedding simply as coordinates in space. We skip the trivial 1D and 2D cases since they are straightforward. 4 dimensions is too complicated for me to gif around with, so 3D dimensions would have to suffice for our illustrations.
Tag: machine learning
Matrix Multiplication as a Linear Transformation
AI algorithms are in the air. The success of those algorithms is largely attributed to dimension expansions, which makes it important for us to consider that aspect.
Matrix multiplication can be beneficially perceived as a way to expand the dimension. We begin with a brief discussion on PCA. Since PCA is predominantly used for reducing dimensions, and since you are familiar with PCA already, it serves as a good springboard by way of a contrasting example for dimension expansion. Afterwards we show some basic algebra via code, and conclude with a citation that provides the intuition for the reason dimension expansion is so essential.
Statistical Shrinkage (4) – Covariance estimation
A common issue encountered in modern statistics involves the inversion of a matrix. For example, when your data is sick with multicollinearity your estimates for the regression coefficient can bounce all over the place.
In finance we use the covariance matrix as an input for portfolio construction. Analogous to the fact that variance must be positive, covariance matrix must be positive definite to be meaningful. The focus of this post is on understanding the underlying issues with an unstable covariance matrix, identifying a practical solution for such an instability, and connecting that solution to the all-important concept of statistical shrinkage. I present a strong link between the following three concepts: regularization of the covariance matrix, ridge regression, and measurement error bias, with some easy-to-follow math.
Statistical Shrinkage (2)
During 2017 I blogged about Statistical Shrinkage. At the end of that post I mentioned the important role signal-to-noise ratio (SNR) plays when it comes to the need for shrinkage. This post shares some recent related empirical results published in the Journal of Machine Learning Research from the paper Randomization as Regularization. While mainly for tree-based algorithms, the intuition undoubtedly extends to other numerical recipes also.
Trees 1 – 0 Neural Networks
Tree-based methods like decision trees and their powerful random forest extensions are one of the most widely used machine learning algorithms. They are easy to use and provide good forecasting performance off the cuff more or less. Another machine learning community darling is the deep learning method, particularly neural networks. These are ultra flexible algorithms with impressive forecasting performance even (and especially) in highly complex real-life environments.
This post is shares:
Understanding Convolutional Neural Networks
Convolutional Neural Networks (CNNs from here on) triumph in the field of image processing because they are designed to effectively handle strong spatial dependencies. Simply put, adjacent pixel-values are close to each other, often changing only gradually from one pixel to the next. In a picture where you wear a blue shirt, all the pixels in that area of the picture are blue. You can think of a strong autocorrelated time series, just for spatial data rather than sequential data. This post explains few important concepts related to CNNs: sparsity of connections, parameter sharing, and hierarchical feature engineering.
Similarity and Dissimilarity Metrics – Kernel Distance
In the field of unsupervised machine learning, similarity and dissimilarity metrics (and matrices) are part and parcel. These are core components of clustering algorithms or natural language processing summarization techniques, just to name a couple.
While at first glance distance metrics look like child’s play, the fact of the matter is that when you get down to business there are a lot of decisions to make, and who likes that? to make matters worse:
- Theoretical guidance is nowhere to be found
- Your choices and decisions matter, in the sense that results materially change
After reading this post you will understand concepts like distance metrics, (dis)similarity metrics, and see why it’s fashionable to use kernels as similarity metrics.
Hyper-Parameter Optimization using Random Search
Hyper-parameters are parameters which are not estimated as an integral part of the model. We decide on those parameters but we don’t estimate them within, but rather beforehand. Therefore they are called hyper-parameters, as in “above” sense.
Almost all machine learning algorithms have some hyper-parameters. Data-driven choice of hyper-parameters means typically, that you re-estimate the model and check performance for different hyper-parameters’ configurations. This adds considerable computational burden. One popular approach to set hyper-parameters is based on a grid-search over possible values using the validation set. Faster and simpler ways to intelligently choose hyper-parameters’ values would go a long way in keeping the stretched computational cost at a level you can tolerate.
Enter the paper “Random Search for Hyper-Parameter Optimization” by James Bergstra and Yoshua Bengio, suggesting with a straight face not to use grid-search but instead, look for good values completely at random. This is very counterintuitive, for how can a random guesses within some region compete with systematically covering the same region? What’s the story there?
Below I share the message of that paper, along with what I personally believe is actually going on (and the two are very different).
What is the Kernel Trick?
Every so often I read about the kernel trick. Each time I read about it I need to relearn what it is. Now I am thinking “Eran, don’t you have this fancy blog of yours where you write about statistics you don’t want to forget?” and then: “why indeed I do have a fancy blog where I write about statistics I don’t want to forget”. So in this post I explain the “trick” in kernel trick and why it is useful.
Local Linear Forests
Random forests is one of the most powerful pure-prediction algorithms; immensely popular with modern statisticians. Despite the potent performance, improvements to the basic random forests algorithm are still possible. One such improvement is put forward in a recent paper called Local Linear Forests which I review in this post. To enjoy the read you need to be already familiar with the basic version of random forests.
Publication in Significance – code
Couple of months ago I published a paper in Significance – couple of pages describing the essence of deep learning algorithms, and why they are so popular. I got a few requests for the code which generated the figures in that paper. This weekend I reviewed my code and was content to see that I used a pseudorandom numbers, with a seed (as oppose to completely random numbers; without a seed). So now the figures are exactly reproducible. The actual code to produce the figures, and the figures themselves (e.g. for teaching purposes) are provided below.
What’s the big idea? Deep learning algorithms
Deep learning algorithms are increasingly featuring in popular news outlets, large-scale media events and academic conferences. But what makes them so popular? Why now?
I recently published what I hope is an easy read for all of you modern-statistics geeks lovers; explaining the thrust behind this machine-learning class of models.
You can download the two-pager from Significance, specifically here (subscription required).
Random forest importance measures are NOT important
Random Forests (RF from here onwards) is a widely used pure-prediction algorithm. This post assumes good familiarity with RF. If you are not familiar with this algorithm, stop here and see the first reference below for an easy tutorial. If you used RF before and you are familiar with it, then you probably encountered those “importance of the variables” plots. We start with a brief explanation of those plots, and the concept of importance scores calculation. Main takeaway from the post: don’t use those importance scores plots, because they are simply misleading. Those importance plots are simply a wrong turn taken by our human tendency to look for reason, whether it’s there or it’s not there.
Curse of Dimensionality part 4: Distance Metrics
Many machine learning algorithms rely on distances between data points as their input, sometimes the only input, especially so for clustering and ranking algorithms. The celebrated k-nearest neighbors (KNN) algorithm is our example chief, but distances are also frequently used as an input in the natural language processing domain; “You shall know a word by the company it keeps” (Firth, J. R. 1957:11); e.g. the word “jaguar” refers to the animal if words like “zoo” or “safari” are also in the neighborhood. But would refer to a mark of a car if words such as “parking” or “highway” are nearby. But (and a big one), ‘in the neighborhood’ means one thing in a low-dimension settings, and another thing in high-dimensional settings. This post emphasizes this important difference- another example of the curse of dimensionality; measuring distance in high dimension.
Most popular machine learning R packages – part 2
In a previous post: Most popular machine learning R packages, trying to hash out what are the most frequently used machine learning packages, I simply chose few names from my own memory. However, there is a CRAN task views web page which “aims to provide some guidance which packages on CRAN are relevant for tasks related to a certain topic.” So instead of relying on my own experience, in this post I correct for the bias by simply looking at the topic
Machine Learning & Statistical Learning. There are currently around 100 of those packages on CRAN.